
  

  

Abstract— Nearly 10% of all births in the United States are 

preterm. Preterm birth is a major risk for developmental 

neuromotor disorders. Early characterization of a future 

developmental outcome is necessary to design early 

interventions. However, such evaluations are currently 

subjective and typically happen only several months after birth. 

The aim of this study was to quantify movement bouts after birth 

and to determine if features of maturation might be 

characterized. Four preterm infants were continuously 

monitored for several months, from a few days after birth until 

discharge, in the Neonatal Intensive Care Unit. Movement was 

quantified from the photoplethysmogram using a wavelet-based 

algorithm. In all 4 infants, maturation was associated with a 

decrease (p < 0.001) in the occurrence of movement bouts ≤ 30s 

and an increase (p < 0.001) in longer movement bouts (> 30s). 

The distribution of movement durations followed a power law 

function with its exponent defining the characteristic of the 

distribution. The exponent significantly increased with post-

menstrual age. Future research will test whether these 

maturational changes can predict developmental outcomes. 

 
Clinical Relevance— Early identification of changes in 

features of preterm infant movement may be useful in predicting 

neuromotor development and potential disorders. 

I. INTRODUCTION 

The human nervous system spontaneously generates a 
wide range of movement patterns starting as early as 8 weeks 
of gestational age (GA) [1]. These movements are an 
expression of spontaneous neural activity, continuing after 
birth. Infants that are born very preterm (GA <28 week) are at 
an increased risk for adverse neurodevelopmental disorders 
including motor impairments, intellectual disabilities, hearing 
loss, and visual impairments. The prevalence of motor 
disorders, cerebral palsy being the most common, is 15% in 
preterm infants born between 24 and 27 weeks of gestation [2]. 
A potential early marker of motor dysfunction might assist in 
designing early therapeutic interventions to treat these 
disorders. For example, early intervention has been shown to 
improve motor outcomes in infancy, with longer-term benefits 
in childhood and in adolescence [3]. 

Current methods to diagnose motor disorders involve 
assessing infant movement at several months of post-natal age 
and correlating them with outcomes at a later age. However, 
such assessments typically involve subjective tests 
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administered by trained clinicians. More automated and 
objective measurements of spontaneous preterm movement 
while in the Neonatal Intensive Care Unit (NICU) could 
provide a better understanding of how features of movement 
change with development. Further, continuous assessment of 
motor function over longer periods may reveal important 
pathologies earlier and more accurately than single or 
sporadically repeated assessments. 

The current study aimed to quantify features of movements 
in preterm infants over a period of months during their stay in 
the NICU, using an algorithm [4] that detected movement from 
the photoplethysmograph (PPG) signal; PPG is routinely used 
for oximetry in preterm infants. Maturational changes in 
movement patterns were quantified as a function of post-
menstrual age (PMA). Additionally, the distribution of 
movement durations across time was examined using power 
law regression. A significant correlation was observed in the 
exponent of the power law with the post-menstrual age of the 
infant. This information might be clinically important for 
assessing long-term neurodevelopmental outcomes of preterm 
infants and as a tool to implement early interventions. 

II.    METHODS 

A. Subjects and data acquisition 

The study protocol was approved by the Institutional 
Review Board at The University of Texas at Austin. Four 
preterm infants were studied in the Level 3 NICU at Seton 
Medical Center in Austin, Texas, with PMA as early as 24 4/7 
weeks until discharge (mean duration: 13 1/7 weeks) (Table 
1). All vital signals were continuously recorded with their 
native sampling rates via an RS232 connection and laptop 
from their bedside monitor (IntelliVue MX450, Philips) using 
a data acquisition system (TrendFace, ixellence GmbH, 
Wildau, Germany or MediCollector BEDSIDE, 
MediCollector LLC, Boston, MA, USA). This study analyzed 
only the PPG signal (sampled at 125 Hz). During their stay, 
infants transitioned from ventilation to spontaneous room air 
breathing, with feeding scheduled every 3 hours. In two 
subjects, there was an interruption in streaming of data due to 
failure of the data acquisition (Table 1).  

B. Measurement of movement 

The PPG signal was used to estimate movement using a 
wavelet-based algorithm developed and validated previously 
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[4]. Briefly, the PPG signal is naturally disrupted by 
movement, producing non-stationary fluctuations of 
frequency that are lower than that of a typical PPG signal. This 
low-frequency artifact was analyzed using a wavelet-based 
algorithm to obtain an estimate of movement. The algorithm 
computed duration of movement bursts by identifying its 
onsets and offsets. Fig. 1 shows an example of a one-hour-long 
PPG time series (Fig. 1A) with the estimated movement 
waveform (Fig. 1B). Additionally, the figure shows the binary 
markers of movement onset and offset (Fig. 1C). In an initial 
analysis we divided movement durations for each day into 
only two categories: ≤ 30s and > 30s. To test the relation 
between PMA and movement in each category, a linear mixed-
model regression was used with PMA as fixed effects. 
Subjects were entered as random effects to account for 
repeated observations of a single infant. The null hypothesis - 
no change in movement with age - was evaluated at the 0.05 
significance level. 

TABLE I.  SUBJECT CHARACTERISTICS 

Sub

# 

GA 

(week) 

PMA on 

day 1 of 

recording 

(week) 

Birth 

Weight 

(g) 

Weight 

on day 1 

of 

recording 

(g) 

Total 

recording 

time 

(week) 

Missing 

data 

(week) 

1 26 4/7 26 5/7 990 735 10 5/7 0 

2 24 4/7 26 1/7 785 675 16 5/7 1 5/7 

3 26 2/7 26 5/7 1065 975 10 4/7 0 

4 24 4/7 25 1/7 495 520 14 6/7 1/7 

GA: Gestational age; PMA: Post menstrual age 

C. Distribution of movement durations 

To further analyze how movement bouts changed across 
days, movement durations were separated into time bins with 
durations incremented by 5s (e.g. 10s, 15s, etc). The 
histograms of these movement durations, plotted for each 24-
hour day, exhibited a long tail, suggesting a power law 
distribution. To compare distributions across days, histograms 
were normalized as each day had a different recording time; 
the area under the curve was set to 1. The power law function 
is defined as:  

P(m) ~ m α 

where, m is the bin number; P(m) is the normalized count of 
movement incidences in bin m; and α is the exponent in the 

power law. This exponent could be obtained by non-linear 
regression, which involves fitting the data to a power law 
function in the linear domain. Another way to compute the 
exponent is through linear regression of the log-log 
transformation of the distribution. As noted in previous studies 
[5, 6], the distribution of the residuals from each regression 
type can be used to identify the better method. Non-linear 
regression in the linear domain is better when the residuals are 
normally distributed in the linear domain, whereas linear 
regression in the log-log domain is better when the residuals 
are normally distributed on the logarithmic scale. Hence, both 
methods were performed and their residuals were obtained 
using the MATLAB function chi2gof. The distribution of 
residuals obtained by fits in the log-log scale proved to be 
better as will be detailed in the results (see Section IIIB). 

An estimate of the exponent obtained from the fit was 
computed for each day of the study to assess the change in the 
distribution with development. A linear mixed-model 
regression tested the relation between PMA and the exponent, 
with PMA as fixed effects and subjects as random effects. 
Statistical analyses were performed using RStudio version 
1.2.5019. The mixed models were implemented with the lmer 
function from the lme4 package [7]. R2-values were estimated 
with the r.squaredGLMM function from the MuMIn package 
[8]. 
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B.     Movement ≤ 30s C.      Movement > 30s 

R2 = 0.002 

p = 0.31 

R2 = 0.63 

p < 0.001 

R2 = 0.21 

p < 0.001 

Figure 2. Movement duration as percentage of total study time by post menstrual age. A. Total movement duration. B. Movement duration ≤ 30 s. 

C. Movement duration > 30 s. The four colors of the symbols represent the individual subjects. The regression lines were obtained using mixed-

model regression p-values indicate significance of slope of the grouped data. 
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Figure 1. Detection of movement: A. PPG signal. B. Estimated 

movement from the wavelet-based algorithm. C. Binary markers of the 

onset and offset of movements determined by the wavelet algorithm. 
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III. RESULTS 

A.  Change in movement duration with maturation 

The percentage of total movement duration as a function 
of PMA is shown in Fig. 2A. While there was no change in the 
total time of movement with age, movements with a duration 
≤ 30s gradually decreased with PMA in each of the 4 infants 
(Fig. 2B). The mixed-model regression rendered R2 = 0.63 and 
p < 0.001. We also observed an increase in the percentage of 
movement duration in the > 30s category with age with R2 = 
0.21, and p < 0.001 from the mixed model analysis (Fig. 2C).  

B. Power law relation 

The change in movement duration with age was further 
characterized by the distribution of different movement 
durations parsed into bins of 5s increment. Given the visible 
long tails, the distributions were fit with a power law (Fig. 3A, 
B). To determine whether linear or non-linear fitting was 
better, the distribution of the residuals was examined. This 
analysis was conducted separately for each day for all subjects. 
Figs. 3A and 3B show the distributions of movement in one 
day in the linear and the log-log transformed domain, along 
with their best fit. The residuals from the respective fits are 
plotted in Figs. 3C and 3D. The log-transformed linear 
regressions resulted in fits with residuals that were close to a 
normal distribution in 310 out of 357 days of recording. The 
non-linear regression yielded residuals that were normally 
distributed in only 30 of the 357 days. Therefore, all further 
analyses were performed on the log-log transformed data. 

Fig. 4A shows the change in the movement distributions of 
one infant across its PMA (subject 3). The plots reveal an 
increase in the incidences of more prolonged movement with 
increasing days of study. For better visualization, the same 
data is plotted in Fig. 4B after applying the logarithmic 
transformation of the density. Using a linear regression in the 
log-log domain, the exponent of the power law distribution 
was estimated as the slope of the linear fit for each day. Fig. 
4C shows that the single day exponent during an earlier age 
(PMA = 30 week) was -2.19 and that for a later day of study it 
was -1.82 (PMA = 37 week).  

Fig.5 shows the changes in the exponent across age for 
each of the four subjects. The colored shaded areas represent 
the confidence intervals in the estimation of the exponent for 
each day. The value of the exponent α shows a significant 
increase with PMA in each of the 4 infants (mixed-model 
analysis: R2 = 0.55, p < 0.001). Gaps in the plot indicate 

missing data. The shaded gray boxes masks data before PMA 
of week 30. These data show more variability due to frequent 
procedures including artificial ventilation during this period. If 
these data are excluded from the analysis, the R2 value 
increases to 0.7 (p < 0.001). 

IV. DISCUSSION 

This study examined two different indices that can be used 
to characterize the change in relative movement duration with 
development in preterm infants. Given the need for early 
identification of potential neurodevelopmental disorders, these 
markers could help design and implement better and earlier 
intervention methods. 

A. Change in percentage of movement duration 

In this longitudinal study we first measured duration of 
movement each day. Although there was no change in the total 
duration of movement as a percentage of recording time, there 
was a decrease in shorter movements ≤ 30s and an increase in 
longer movements > 30s. These findings are consistent with 
other studies on preterm infants [9, 10]. Short movements 
(≤30s) may correspond to twitches, sighs, startles and jitters 
which have shown to decrease with maturity over the preterm 
period. An increase in the incidences of longer movements 
could indicate maturation of the central nervous system where 
simpler and shorter movements progress into complex and 
more prolonged movements involving the entire body. 
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Figure 3. Fitting a power law function to movement duration in the linear 

domain (A) vs log-log transformed domain (B). C and D. Histogram of 

residuals obtained from each of the fits. Normal density functions (red) are 

superimposed on the histograms. Goodness-of-fit: Distribution of residuals 

are closer to normal in the log-log transformed domain. 
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Figure 4. Power law distributions of movement duration. A. Each day of recording in a single infant (subject 3). B. Log transformation of density. C. 

Slope of the regression-line in the log-log domain for an earlier and later age. 
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B. Power law and physiological interpretations 

When movement duration was analyzed in 5s bins, a power 
law distribution emerged that could be characterized by a 
single number, the exponent α of the power law, which is the 
slope of the long-tail distribution in the log-log domain. As the 
infants matured, the slope of the power law distribution 
became less steep. This is more evident beyond the PMA of 30 
weeks. The variability below 30 weeks could arise from 
procedures during early care of the infant. Physiologically, the 
change in exponent could indicate several mechanisms. A first 
mechanism is synaptic pruning, a process during early brain 
development, where the brain starts out with a relatively high 
density of synapses [11]. As the infant matures, synapses are 
pruned, i.e., the number of synapses diminish. One may 
speculate that the high-density neural network in the brain has 
preferential generation of movements of shorter durations, 
thus generating the power law distribution [12]. As the 
incidences of longer movement start to increase, the exponent 
of the power law distribution also shifts. A second possible 
mechanism explaining this observation could be the increase 
in myelination during development. The extent of myelination 
has been linked to psychomotor development [13, 14]. 
Myelination increases the conduction speed of the nerve 
impulses, thus allowing for higher incidences of longer 
movement duration. Lastly, the maturation of neurotransmitter 
and neuromodulator systems such as serotonin and dopamine 
may be another mechanism causing the change in movement 
distribution [15].  

C. Caveats 

This study examined the change in the characteristics of 
movement with age. While this algorithm reliably recorded 
generalized movement using a routine sensor in the NICU, the 
algorithm was unable to capture qualitative features of 
movement such as intensity or limb-specificity of these 
movements. More features of the movements can be obtained 
by attaching additional sensors (accelerometers, IMUs, etc.) 
on the infants. However, this is not only difficult in clinical 
settings, but also impractical for data collection over months. 
Due to similar practical reasons, our data contained some 
confounds, such as passively generated movement on these 
infants from handling by nursing staff, and other procedures. 

Nevertheless, even without removing these events from the 
analyses, a visible trend in the movement characteristics was 
evident. This is important as for any clinical applicability, it is 
necessary to use data that do not require selected removal of 
data or other extended post-processing.   

V.    CONCLUSION 

The features derived from preterm infants at such an early 
age might be useful when compared with outcomes at a later 
age, thus enabling identification of infants at risk for 
neurodevelopmental delays and disorders.   
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Figure 5. Change of the exponent of the power law distribution with post 

menstrual age. PMA < 30week are indicated by shaded grey bands. Colored 

shaded areas indicate the confidence interval of the estimate of the exponent. 
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