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Abstract— A prominent challenge in the field of robotics
is manipulation of flexible objects. One major reason that
makes this task difficult is the complex dynamics emerging
from its high-dimensional structure. This argues against the
use of popular optimization-based approaches, which scale
poorly with system dimension (the “curse of dimensionality”).
Nevertheless, almost indifferent to this complexity, humans
handle it on a daily basis, without any apparent difficulty.
Inspired by human motor control, we propose that composing
movements based on primitive actions can dramatically simplify
the task of manipulating flexible objects and provides a way
around the curse of dimensionality.

Using an extreme example — manipulating a whip — we
tested in simulation whether a distant target could be reached
with a whip by using a controller composed of dynamic motor
primitives. Regardless of the target location, this approach was
able to manage the complexity of a 54 degree-of-freedom system
(yielding a 108-dimensional state-space representation) and
succeeded to identify an upper limb movement that achieved
the task. The controller had no internal model of the daunting
complexity of the whip dynamics, which thereby significantly
simplified the computational complexity of the control task.
To the extent that dynamic motor primitives offer a simplified
solution to complex object manipulation, this approach may
facilitate robotic manipulation of flexible materials, and in
general afford a simplified way to control dynamically complex
objects.

I. INTRODUCTION

Endowing robots with human-level dexterity is one of the
ultimate goals of robotics. While the gap between human and
robot performance is rapidly closing, humans’ astonishing
dexterity is still far superior to anything yet achieved in
robotic systems [1].

The disparity in performance becomes more evident when
the task involves manipulation of flexible objects with sig-
nificant dynamics. The complex dynamics emerging from
its high degree-of-freedom (DOF) structure is one of the
many factors which make this task challenging [2]. Due to
the high-dimensional structure, popular optimization based
approaches, which scale poorly with system dimension, often
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fail to identify the optimal solution (the notorious “curse
of dimensionality”) [3]. Nevertheless, humans are strikingly
adept at manipulating flexible objects, without any apparent
difficulty. With care, understanding the strategy which hu-
mans use to handle flexible objects may allow us to better
bridge the performance gap between humans and robots.

Insights gained from human motor control have already
helped inspire new ways to manipulate flexible objects [4]. In
simulation, Nah et al. used a controller composed of dynamic
motor primitives [5], [6] to reach a distant target with a whip
— one of the most complex and exotic tools which humans
can handle [2]. Simplifying the whip task via parameterized
dynamic primitives dramatically reduced the computational
complexity of the optimization problem, and succeeded to
identify an optimal movement that achieved the task.

This article extends the work reported in [4]. Previous
work considered a 2-DOF model of the human upper limb
and studied a task in which the arm, whip and target
were confined to a 2D sagittal plane. The work reported
here considered a 4-DOF model of the human upper limb,
spatial motions of arm and whip, and several different
target locations. We formulated and parameterized a 4-DOF
model of the human arm interacting with a 50-DOF whip
model, where the model parameters were derived from an
actual bullwhip [4], [7]. The upper limb movement was
generated by a feedforward motion command composed
of a single maximally-smooth trajectory, planned in joint-
space coordinates. We found that regardless of the target
location, this approach was able to manage the complexity
of a 54-DOF system (yielding a 108-dimensional state-space
representation) and succeeded to identify an upper limb
movement that achieved the task. Encoding movements with
parameterized primitive actions dramatically simplified the
control task of manipulating a whip, and offered a way
to work around the curse of dimensionality. This result
reconfirmed the effectiveness of dynamic motor primitives
to control an (extremely) high DOF object. We believe that
this approach may facilitate robotic manipulation of flexible
objects, which is currently a major challenge.

II. METHODS

The research presented in this paper used the simulation
software MuJoCo [8]. For all of the MuJoCo simulations,
the semi-implicit Euler method was chosen as the numerical
integrator, with a time step of 0.1ms (10,000Hz).

A. Modeling

The model used in the MuJoCo simulation consisted of
two main parts: a model of a human upper limb (the manip-
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Fig. 1: The upper limb (A-C) and whip model (D-E) rendered with the MuJoCo simulator. (A) Mass, principal axes of inertia and the reference frame of
each limb segment (Table I). (B) Length of each limb segment and length from proximal joint to center of mass (C.O.M.) (Table I). (C) Rotational joints
of shoulder (J1-J3) and elbow (J4) and their axes of rotation. (D) Length l and mass m of each sub-model and number of sub-models (i.e., node number)
N of the whip model. (E) Rotational joints which serially connect the sub-models, and their axes of rotation. Each rotational joint was equipped with a
linear rotational spring k and rotational damper b. Axes of rotation are visualized as bullet shapes.

ulator) and a model of a whip (the object being manipulated).
1) A 4-DOF upper limb model: The human arm was

modeled as a two-bar open-chain linkage. Everything distal
to the wrist (i.e., hand, fingers etc.) were omitted from this
model. The two limb segments — the upper arm (which
extends from the shoulder to the elbow), and the forearm
(which extends from the elbow to the wrist) — were treated
as non-uniform cylinders, i.e., the center of mass (C.O.M.)
did not coincide with the geometric center of the limb
segment. The geometrical and inertial parameters of each
limb segment were obtained from a computational model by
Hatze [9], and the detailed values are presented in Table I
(Fig. 1A,1B,1C)

The upper limb model had 4-DOF — 3-DOF at the shoul-
der and 1-DOF at the elbow. The ball-socket mechanism
of the glenohumeral joint of the shoulder was modeled as
a 3-DOF spherical joint. The 3-DOF spherical joint of the
shoulder was constructed as a sequence of three rotational
joints whose axes of rotation were initially orthogonal — de-
noted as J1-J3 (Fig. 1C). The three rotational joints in order,
corresponded to flexion/extension (J1), adduction/abduction
(J2) and lateral/medial rotation (J3). The shoulder joint was
fixed in space, i.e., translation movements of the shoulder
were omitted from the model. The movement of the elbow
was modeled as single-joint elbow flexion/extension (J4)
(Fig. 1C). Supination/pronation of the elbow was omitted
from the model. For all 4 joints, independently controlled
torque actuators were mounted co-axially.

2) A 50-DOF whip model: The continuous structure of a
whip was modeled as a discrete lumped-parameter system,
in which the continuum was approximated and replaced by
a finite N -DOF system composed of (ideal) lumped ele-
ments, i.e., massless linear rotational springs, massless linear
rotational dampers, point-masses etc. (Fig. 1D,1E). Each

sub-model of the whip consisted of three lumped-parameter
elements: an (ideal) point-mass, a linear rotational spring and
a linear rotational damper. The point-mass m was suspended
from a massless cylinder with length l. The other end of
the massless cylinder was equipped with a 2-DOF universal
joint, which consisted of two rotational joints whose axes of
rotation were orthogonal. Each rotational joint was equipped
with a linear rotational spring and a linear rotational damper,
with coefficients k and b, respectively (Fig. 1E). The values
of the model parameters of the whip were obtained from an
“experimentally-fitted” whip model, where the values were
derived from experimental observations of an actual bull
whip [4], [7].

3) Connection between the two models: To introduce no
torque between the upper limb and whip model, the rotational
stiffness k and damping coefficient b of the whip sub-model,
which directly attached to the end-effector of the upper limb
model, were set as zero. Summarizing, the whole system
resulted in a 54-DOF open-chain linkage.

B. Controller

1) Impedance Controller: A first order-impedance con-
troller with gravity compensation was used for the upper
limb controller [10]:

τ =K (φ− θ) +B (φ̇− θ̇) + τG (1)

whereK,B ∈ R4×4 are constant joint stiffness and damping
matrices, which account for the neuromuscular mechanical
impedance of the upper limb model; τ ∈ R4 denotes the
net torque input of each joint actuator; θ ∈ R4 denotes
the actual joint displacements of the upper limb model;
φ ∈ R4 denotes the “zero-torque” trajectory, i.e., neglecting
gravitational effects, no torque will be exerted by the actuator
when φ exactly matches the actual joint displacements θ



TABLE I: The Model Parameters

Description Notation Values Unit

Limb Inertia
Parameters

Mass of limb segment M1 , M2 1.595 , 0.869 [kg]
Length of limb segment L1 , L2 0.294 , 0.291 [m]
Length from proximal joint to center of mass L1c , L2c 0.129 , 0.112 [m]
Principal moment of inertia, x′-axis I1,xx, I2,xx 0.0119, 0.0048 [kg·m2]
Principal moment of inertia, y′-axis I1,yy , I2,yy 0.0119, 0.0049 [kg·m2]
Principal moment of inertia, z′-axis I1,zz , I2,zz 0.0013, 0.0005 [kg·m2]

Parameters of the
Whip Model

Number of nodes N 25 [-]
Value of the point-mass m 0.012 [kg]
Length of massless cylinder l 0.072 [m]
Coefficient of the rotational spring k 0.242 [N·m/rad]
Coefficient of the rotational damper b 0.092 [N·m·s/rad]

(Top) The geometrical and inertial parameters of the upper limb model. Subscripts denote the upper arm and forearm, numbered proximal to distal. Principal
moments of inertia of limb segments were calculated with respect to the center of mass (C.O.M.) (Fig. 1A). (Bottom) The parameters of the whip model,
which were measured and experimentally derived from an actual bull whip. Graphical depictions of the upper limb and whip models are shown in Fig. 1.

[4]; τG ∈ R4 denotes the torque required to compensate the
gravitational forces applied to the whole system (Sec. II-B.2).
The zero-torque trajectory, φ(t) was the feedforward motion
command of the controller which generated the upper limb
movement (Sec. II-B.3).

2) Gravity Compensation: Gravitational effects were
compensated with τG, so that the actual upper limb posture,
θ could exactly match the zero-torque posture, φ when the
whole model was at rest. In detail:

τG = JT
01f1,G + JT

02f2,G + JT
03f3,G (2)

where Jij ∈ R3×4 is a Jacobian matrix of frame j relative to
frame i; fi,G ∈ R3 denotes the gravitational force applied to
frame i; frame 0, 1, 2 and 3 are attached to the shoulder,
center of mass of the upper arm, center of mass of the
forearm, and the end-effector of the upper limb model, where
the connection with the whip happened (Fig. 2).

The detailed force vectors are as follows:

f1,G =M1g, f2,G =M2g, f3,G =Mwg (3)

where M1 and M2 denote the mass of upper arm and
forearm, respectively (Table I); Mw denotes the total mass
of the whip model, which is the node number of the whip,
N multiplied by the mass of a single sub-model, m (Mw =
m · N = 0.3kg); g ∈ R3 denotes the gravity vector in the
simulation environment (Fig. 2).

3) Motion Planning – Zero-torque Trajectory: The zero-
torque trajectory, φ(t) (Eq. 1) of the upper limb model
followed a discrete rest-to-rest minimum-jerk profile in joint
coordinates [11].

φ(t) = φi+(φf−φi)·
{
10
( t
D

)3−15( t
D

)4
+6
( t
D

)5}
(4)

where subscripts i and f denote the initial and final (zero-
torque) postures, respectively; D denotes the duration of the
movement. For times greater than duration D (i.e., t > D),
the zero-torque trajectory of the upper limb remained at final
posture φf . The zero-torque trajectory, φ(t) was determined
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Fig. 2: Frames and the imposed gravitational forces of the simulation model.
Frame 0, 1, 2 and 3 are attached to the shoulder, center of mass of the upper
arm, center of mass of the forearm, and the end-effector of the upper limb
model, respectively.

by 9 movement parameters: 4 for initial posture φi, 4 for
final posture φf , and 1 for the movement duration D.

4) Stiffness and Damping Matrices: The neuromuscular
mechanical impedance K and B matrices (Eq. 1) were cho-
sen to be symmetric positive-definite matrices. The damping
matrix, B was chosen to be proportional to joint stiffness, K
such that B = βK for a positive constant β = 0.05s. The
detailed values used for the stiffness matrix K and damping
matrix B were as follows:

K =


17.4 6.85 −7.75 8.40
6.85 33.0 3.70 0.00
−7.75 3.70 27.7 0.00
8.40 0.00 0.00 23.2

 , B = 0.05K (5)

C. Task Definition and Optimization

A simple-yet-non-trivial whip task was defined to evaluate
the performance of the upper limb controller. The goal of
the whip task was to hit a distant target with a whip.
Quantitatively, the objective of the whip task was to minimize
the value L [m], the distance between the tip of the whip



and target, with a single discrete upper limb movement,
i.e., a single set of 9 movement parameters of the zero-
torque trajectory, (φi,φf , D) (Eq. 4). The minimum value
of the distance L reached with a single discrete upper limb
movement, L∗ [m], was a quantitative measure to assess
movement performance.

Three different target locations were defined for the whip
task. All three targets were distanced just 0.01m outside of a
sphere, centered at the shoulder joint, of radius R [m] equal
to the sum of the lengths of the upper limb and the length
of the whip model (R = L1 +L2 +N · l+ 0.01 = 2.395m)
(Table I). This offset avoided the whip model colliding with a
target, which prevented unnecessary contact dynamics being
included in the simulation, while retaining the qualitative
and quantitative goal of the whip task. In a spherical co-
ordinate system (radius-azimuth-elevation), target 1, 2 and
3 were located at coordinate (R, 0◦, 0◦), (R, 45◦, 0◦) and
(R, 45◦, 45◦), respectively (Fig. 3).
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Fig. 3: Graphical depiction of the three target positions of the targeting task,
and the coordinate frame of the simulation.

For each target location, the optimal 9 movement param-
eters, (φi,φf , D) which minimized the minimum distance
between the tip of the whip and target, were identified with
a global derivative-free optimization algorithm DIRECT-
L (DIviding RECTangles Locally biased) under the nlopt
(nonlinear optimization) Python tool box [12]. The upper and
lower bound of the search space used for the optimization are
presented in Table II. Within the bounds of the constraint, the
DIRECT-L optimization algorithm conducted 600 iterations.

III. OPTIMIZATION RESULTS

For each target location, the DIRECT-L algorithm con-
verged to an optimal set of 9 movement parameters which
resulted in a minimum value of distance L∗. Detailed values
of the optimal parameters of the movement and its corre-
sponding L∗ value are presented in Table II. A time-lapse of
the simulation results generated by the optimal movement
parameters, visualized using MATLAB (Mathworks Inc.,
Natick, MA), is shown in Fig. 4.

IV. DISCUSSION

A. Dramatic Simplification of the Whip Task

This study examined in simulation whether a target with
various locations in 3D space could be reached with a whip
using a (small) number of primitive actions, whose parame-
ters could be learned through optimization. Considering the
dimensionality of the whole system, this task is by no means
trivial — the task was to coordinate a system with 108
state-space dimensions to reach targets at several locations.
Despite this daunting complexity, encoding upper limb action
using the parameters of a single movement dramatically
simplified the targeting task and successfully managed the
complexity of an extremely high-dimensional system. This
approach provided a way to work around the curse of
dimensionality, and the algorithm was able to converge to
an optimal upper limb movement.

It is worth emphasizing that this method completely
avoided the need to acquire a detailed and accurate model of
the whip. Regardless of the dimensionality or complexity of
the object dynamics, the manipulation task was substituted
by the optimization of a small set of movement parameters.
This approach seems to be a key simplification required to
learn complex motor skills, since only a small set of param-
eters are acquired and retained regardless of the complexity
of the object. Moreover, assuming the existence of a well-
defined objective function, we believe that this method can
be generalized and may afford a simplified way to control
dynamically complex objects.

B. Simplified Motion Planning of the Controller

While tremendous progress has been achieved in manipu-
lation of rigid objects, flexible object manipulation remains
a long-standing problem. Most studies depended on human
demonstrators, or required an extremely large set of data to
learn the task [13], [14]. By composing movements based
on primitive actions, the method reported here succeeded
to manipulate a flexible object with significant dynamics,
without the need to acquire or extract any data from human
demonstrations, and with a modest number of iterations of
the optimization.

Motion planning for flexible object manipulation is known
to be a significant challenge, since the complex dynamics
of the object lead to unpredictable behavior [15]. Previous
motion planning methods often involved vision algorithms
to detect key features, along with an analytical model of
the object [16]. However, these methods still suffer from the
complexity emerging from the high-dimensional structure of
the object. The approach presented in this paper does not
rely on any specific analytical model nor visual observation
of the whip. We found that planning a feedforward open-loop
motion command, φ(t) (Eq. 4), with a constant impedance
termsK andB, was sufficient to manipulate a 50-DOF whip
model for the targeting task.

Previous study suggests that for tasks involving complex
interaction dynamics, the minimum-jerk principle has limited
value [17]. This fact was proven in a task of transporting a



TABLE II: The Upper, Lower Bound of the Search Space, Optimal Movement Parameters

Movement Parameters
𝜙!,# [rad] 𝜙$,# [rad] 𝜙%,# [rad] 𝜙&,# [rad] 𝜙!,' [rad] 𝜙$,' [rad] 𝜙%,' [rad] 𝜙&,' [rad] D [s] 𝐿∗ [m]

Bounding Box 
Constraints

Lower Bound −0.5𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.1𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.4

Upper Bound 0.1𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.0𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.5

Optimal 
Movement 
Parameters

Target 1 −1.501 0.000 −0.237 1.414 1.728 0.000 0.000 0.332 0.950 0.051

Target 2 −1.103 0.737 −0.233 2.310 1.728 −1.034 −1.396 0.192 0.579 0.092

Target 3 −0.943 0.815 −1.396 1.728 2.670 −0.698 −1.396 0.052 0.950 0.127

nonlinear cup-and-ball system, which was not competently
achieved with a single minimum-jerk profile. The result pre-
sented in this paper provides an intriguing counterexample
— the targeting task involved an interaction with a 50-
DOF model, and a minimum-jerk (nominal) motion was still
able to manage this complexity. The dimensionality of the
object (50-DOF vs. 2-DOF) may account for this differ-
ence, affording more opportunities for success using simple
actions. Rather than the minimum-jerk principle showing
limited value for complex object manipulation [17], this
result instead expands its value by widening the range of
complex manipulation tasks which can be achieved.

Although the method presented in this paper provided an
effective way to significantly reduce the dimensionality of the
optimization problem, we want to emphasize that this result
does not preclude alternative approaches. For example, an
input time-history (e.g., of joint torques) might be defined by
a sparse number of knot points connected by some suitable
spline function, and that may also facilitate convergence of
the optimization. In essence, the discrete motion profile used
here is an extreme example of that approach, using only
two knot points in the R4 space for the entire trajectory.
But one should note that the choice of motion profile was
not arbitrary, but based on biological observation of human
movements in multiple situations [18].

C. Justification of the Stiffness and Damping Matrices

Three key modeling assumptions were used to determine
the K and B matrices (Eq. 5):
• The neuromuscular stiffness corresponding to shoulder

joints J2, J3 (excluding the shoulder flexion/extension joint,
J1) and elbow joint J4 were perfectly decoupled.
— Intrinsic neuromechanical impedance arises from the
properties of muscles and their activation. Several mul-
tiarticular muscles exist which couple motion across the
shoulder and elbow joints [19]. Hence, multiarticular mus-
cles result in off-diagonal stiffness terms between the
shoulder and elbow joint. For simplicity, we assumed
that the coupling between joint J1 and J4 was largely
predominant, such that the cross-coupling stiffness terms
between shoulder joint J2, J3 and elbow joint J4 could be
neglected.

• The stiffness matrix K was chosen to be symmetric.
— Studies have shown that the force field emerging
from the elastic properties of the upper limb musculature

is nearly curl-free, meaning that the stiffness matrix of
the neuromuscular impedance of the upper extremity is
predominantly symmetric [20]. In principle, symmetry
of the stiffness matrix is consistent with passivity (i.e.,
the system may store energy and release it, but cannot
continuously supply power), which plays a key role in
preventing instability due to physical contact and dynamic
interaction with passive objects [21].

• The damping matrix B was chosen to be proportional to
joint stiffness K, i.e., B = βK for some constant β.
— To model the dynamics of the first order impedance
controller with a single time-constant, values for the joint
damping matrix B were assumed to be proportional to the
joint stiffness matrix K. For this upper limb controller, the
time-constant β was set as 0.05s [22] (Eq. 5).

Along with these key assumptions, experimental measure-
ments [23], [24] were used to construct the stiffness matrix
K and damping matrixB of the upper limb controller, which
resulted in a motion resembling the actual motor behavior of
the upper limb.

D. Dynamic Motor Primitives – Relation to Prior Work

Composing a controller based on dynamic motor primi-
tives offered a simplified solution for complex object ma-
nipulation. A single movement planned in joint-space co-
ordinates, which corresponds to a motion primitive, and a
constant impedance described by K and B, which account
for physical interactions, were able to manage the complex
dynamics of the whip [5], [6].

Note that the idea of simplifying motor control via
primitive elements is not at all new. Approaches using
dynamic movement primitives have been proposed as a
powerful, robust and adaptive method for various tasks [25],
[26]. Nevertheless, to the best of our knowledge, this prior
work mainly focused on unconstrained movements or on
the manipulation of rigid objects with comparatively low
system dimensions [27], [28]. Tasks which involve objects as
dynamically complex as a whip have not been fully explored.
The study presented in this paper has expanded the feasibility
of primitives-based approaches by managing a very complex
object using just one motion primitive.

As used in the work reported here, dynamic motor
primitives include mechanical impedances to account for
physical interaction with the object [6]. Adding mechanical
impedance as a class of dynamic primitives may facilitate
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Fig. 4: The time-sequence of upper limb (orange) and whip model (purple). (A) Target 1 (B) Target 2 (C) Target 3. The simulation was generated by the
optimal upper limb movement parameters (Table II) and re-visualized in MATLAB.

the control of physical interactions. However, by choosing
constant impedance terms, this study did not explore the
effect of mechanical impedance for complex object manipu-
lation. Studying the role of mechanical impedance is a topic
of future research.

V. CONCLUSION

The simulations presented in this paper demonstrated that
encoding control based on primitive dynamic actions enabled
optimization to successfully identify an optimal movement
that handled an extremely complex object — a whip. We an-
ticipate that applying this dynamic motor primitives approach
to robot control systems may facilitate robotic manipulation
of flexible materials, which continues to be a significant
challenge.
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