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Learning to manipulate a whip with simple
primitive actions – A simulation study

Moses C. Nah,1,7,* Aleksei Krotov,2 Marta Russo,3,4 Dagmar Sternad,5 and Neville Hogan1,6

SUMMARY

This simulation study investigated whether a 4-degrees-of-freedom (DOF) arm
could strike a target with a 50-DOFwhip using a motion profile similar to discrete
human movements. The interactive dynamics of the multi-joint arm was modeled
as a constant joint-space mechanical impedance, with values derived from exper-
imental measurement. Targets at various locations could be hit with a singlemaxi-
mally smooth motion in joint-space coordinates. The arm movements that hit the
targets were identified with fewer than 250 iterations. The optimal actions were
essentially planar armmotions in extrinsic task-space coordinates, predominantly
oriented along the most compliant direction of both task-space and joint-space
mechanical impedances. Of the optimal movement parameters, striking a target
was most sensitive to movement duration. This result suggests that the elemen-
tary actions observed in human motor behavior may support efficient motor con-
trol in interaction with a dynamically complex object.

INTRODUCTION

Human dexterity is remarkable. Our ability to create and use tools has given us a significant evolutionary

advantage. On a daily basis, we manipulate objects with many degrees of freedom (DOF) that exhibit com-

plex behavior— folding a newspaper, tying shoelaces, donning a jacket. Amore exotic example is cracking

a whip, which confronts us with the daunting complexity of the tools that humans can master. A whip is a

deformable structure with non-uniform mechanical properties, that interacts with the complex compress-

ible fluid dynamics of air. If a whip is ‘cracked’, it operates into the supersonic regime.1–3 A physical model

to describe the fluid-structure interaction requires nonlinear partial differential equations of infinite order.

Nevertheless, humans can learn to manipulate a whip, with some ‘whip masters’ reaching impressive levels

of expertise — a trained whip master can halve an apple on a person’s head without touching their hair.4,5

How do humans achieve such astonishing dexterity? A recent experimental study examined how humans

strike a target with a whip manipulating it in discrete and rhythmic fashion.5,6 Analysis of both movement

styles showed that the hand motion exhibited a pronounced speed peak during the throwing action. The

motion profile was reminiscent of the bell-shaped speed profiles observed in a plethora of other behaviors:

discrete human actions such as point-to-point motions exhibit a robustly repeatable pattern with a roughly

symmetrical bell-shaped speed profile, both for horizontal-planemotions (which are generally straight) and

for vertical-plane motions (which are usually curved).7–9

This bell-shaped speed profile appears to characterize one of the building blocks or ’primitives’ of human

motor control.10 The earliest movements made by persons recovering after a stroke (cerebral vascular ac-

cident) are a sequence of submovements with this profile; and they progressively overlap and blend as re-

covery proceeds.11 One ormore such (sub)movements with this speed profile would be well-suited to prop-

agate a pulse of deformation into and along a whip, thereby exciting a robust traveling-wave behavior.

Following the analysis of experimental data in human whip manipulation,5 this study used simulation to

test whether such discrete movements were sufficient to generate whip motions that hit a target.

A possible advantage of using suchmovements is that it simplifies controlling a whip. Whichever procedure

is used, manipulating an object may be understood as searching the space of parameters that determine

the action. Due to the complexity of whip dynamics, the dimension of the space of possible control actions

— e.g., trajectories of the whip handle — is prohibitively large. However, a movement with a pre-deter-

mined bell-shaped speed profile may be defined by a small number of parameters: start position, end
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position, and duration. As a result, provided a small number of submovements is competent to make the

whip hit a target, the dimension of the search space would be reduced dramatically.

This study extended previous work by Nah et al.12,13 and examined whether discrete movements of the up-

per arm can generate whip movements that aim to strike targets at different distances and directions. In

simulation, we developed a simple arm model with motion elements that employed maximally smooth

movements with bell-shaped speed profiles. The spring-like property of the human’s neuromuscular sys-

tem was modeled as constant joint-space mechanical impedances, where the values were derived from

experimental measurement.We used an optimization algorithm to find the optimal parameters for the joint

motions to strike the targets.

The following five specific questions were addressed:

1. Are maximally smooth discrete movements (with a bell-shaped speed profile) sufficient to reach

different target locations?

2. How many search iterations are required to find an optimal movement that achieved the targeting

task?

3. How sensitive is performance to the optimal movement parameters?

4. How planar is the optimal hand movement in task-space coordinates?

5. How are the limb’s mechanical impedance affected by performance?

RESULTS

To simulate the control of a whip striking a target, a multi-joint model of the human upper limb with four

controllable DOF was coupled to a discretized model of a whip with 50 DOF. The upper limb movements

were controlled by a joint-space impedance controller: constant joint-space impedances were connected

to a virtual trajectory planned in joint-space coordinates.12 The virtual trajectory was a minimum-jerk mo-

tion, which modeled the bell-shaped speed profile commonly observed in discrete human movements.9

This enabled the movement to be defined by 9 parameters: 1 for movement duration, 4 for the starting

(virtual) joint posture, and 4 for the ending (virtual) joint posture. The performance of the movement was

evaluated by the closest distance that the whip reached with respect to the target. A robust optimization

procedure14 was used to identify discrete movements that could strike targets at different locations.

In overview, the results showed that a single discrete (maximum-smoothness) movement in joint space,

defined by 9 parameters, was able to make the whip strike or closely approach each of 6 different targets

(Figure 1). The controller was able to strike 5 out of 6 targets. For the target located at the highest and most

distant location, the closest approach of the whip to the target was 10 cm. Remarkably, no more than 250

iterations (and as few as 39 iterations for target 3) were required to identify a movement that achieved the

task (Figure 2; Table 1). Systematic similarities of the movements to different targets were observed. For all

targets, the optimal hand movements were mostly planar in task-space coordinates. The optimal move-

ments were predominantly in the most compliant direction of both joint-space and task-space mechanical

impedances. Of the optimal movement parameters, striking the target was most sensitive to movement

duration.

Hitting a target

Figure 1 illustrates the placement of the 6 targets with respect to the upper limb and whip model. Targets 1

to 3 were located well within reach of the extended whip, overlapping by roughly a quarter of the whip’s

length. Targets 4 to 6 were located at a distance equal to the combined length of the fully extended up-

per-limb and whip. Hence, targets 4 to 6 could only be hit by striking precisely with the tip of the whip,

requiring greater precision.

Despite the high dimensionality of the model’s state-space — a 54-DOF system, yielding a

108-dimensional state-space representation — the DIRECT-L algorithm successfully identified a single

discrete movement that was able to strike or closely approach the target. Figure 2 shows the optimization

results for minimum distance between whip and target. For targets 1 to 5, the optimized movement

managed to successfully strike the targets. Remarkably few iterations were required — fewer than 100
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iterations for targets 1 to 3 that were well within reach; fewer than 250 iterations for all other targets. Even

for the most difficult target 6, at the highest and most distant location, the closest distance between the

whip and target was 10cm and was identified within 250 iterations.

Characteristics of the optimal movements

The optimal movements were qualitatively and quantitatively similar for targets in the same direction, i.e.,

targets 1 and 4, or targets 2 and 5, or targets 3 and 6 (Figure 1). For targets 1 and 4, which were located in

the frontal direction, the optimal trajectory was a large nearly planar ‘sweeping’ movement of handle and

whip aligned with a sagittal plane (Figures 3A and 4A). The measure of average deviation from a planar sur-

face, planar surface deviation (PSD) (Table 2), was smaller than for other targets. For targets 1 and 4, the

average deviation from the best-fit plane was approximately 1cm. The normal vectors of the best-fit planes

almost co-aligned with the normal vector of the xz-plane, i.e., a sagittal plane (Figures 5A and 6A). For

Figure 1. Target locations

Graphical depiction of the six target positions and the task-space coordinate frame of the simulation. Distance R, which is

the radius of a sphere centered at the shoulder of the upper limb (depicted as a white marker), is equal to the sum of the

lengths of the upper limb and whip (i.e., R = L1 + L2 + l$N = 2:385m) (Table 3). The three nearby targets are separated

from the three farther-away targets by a constant radial distance d (0.4m). Target locations are shown in a spherical

coordinate system (radius-azimuth-elevation): Target 1:(R � d;0+;0+), Target 2: ðR � d;45+;0+Þ, Target 3: ðR � d;45+;

45+Þ, Target 4:(R;0+;0+), Target 5: ðR;45+;0+Þ, Target 6: ðR;45+;45+Þ.
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Figure 2. Result of the optimization

Minimum distance between the whip and target L� over iterations for targets 1 to 3 (top panel) and 4 to 6 (bottom panel).

For the optimization of target 6, the occasional spikes are due to the DIRECT-L algorithm’s procedure.12,13
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targets 1 and 4, the angles between the normal vectors of the xz-plane and the best-fit planes were approx-

imately 10� (Table 2).

Targets 2 and 5 were rotated 45� about a vertical axis through the shoulder from targets 1 and 4, and the

optimal movements were qualitatively and quantitatively different (Figures 3B and 4B). The PSD values for

targets 2 and 5 were approximately 6cm, which was larger than for other targets. The best-fit planes were

strongly tilted in the roll direction (Figures 5B and 6B). For targets 2 and 5, the angles between the normal

vectors of the xz-plane and the best-fit planes were approximately 45�.

Targets 3 and 6 were elevated 45� from targets 2 and 5. The optimal handmovements for targets 3 and 6 were

more planar than for targets 2 and 5 and closer to a large planar sweeping motion (Figures 3C and 4C). For

targets 3 and 6, the PSD values were 3.9cm and 2.6cm, respectively. These values were between those of tar-

gets 1 and 4 and targets 2 and 5 (Table 2). While the movements for targets 3 and 6 were largely planar, the

best-fit planeswere strongly tilted in the roll direction (Figures 5C and 6C). As with targets 2 and 5, for targets 3

and 6, the angles between the normal vectors of the xz-plane and the best-fit planes were approximately 45�.

Despite these quantitative and qualitative differences, the average deviation from the planar movement

was relatively small — maximum 6.5cm, which is 10% of the length of the upper limb (Table 2). Hence,

for all targets, the resulting hand movements that achieved the targeting task were mostly planar in

task-space coordinates.

Sensitivity of the optimal movement parameters

The sensitivity of successful hits to deviations from the 9 optimal movement parameters was assessed. The

analysis was conducted for targets 1 to 5, since only for these targets were optimal parameters found to hit

the target. Of the 9 movement parameters for these five targets, striking the target was most sensitive to

movement duration (Figure 7). Even an error as small as 10ms (targets 4, 5) or 40ms (target 3) from the optimal

movement duration failed to hit the target. This result emphasizes the highly nonlinear and complex dynamics

of the whip, where even a negligibly small error from the optimal movement results in a failure to hit a target.

Relation of the optimal movements to limb mechanical impedance

The qualitative differences in the movements toward different targets might be related to the joint-space

mechanical impedance of the upper-limb model. To explore that possibility, the directions corresponding

to the eigenvectors of the 4-dimensional joint-space stiffness were computed and ranked in ascending or-

der of the corresponding eigenvalues. A consistent pattern emerged: regardless of target location, the

contribution of the first joint-space eigenvector (i.e., eigenvector corresponding to the smallest eigen-

value) was larger than the contributions of all other eigenvectors (Figures 5A, 6A, and 8). Qualitatively,

the optimal movements weremostly oriented along themost compliant direction of the joint-space imped-

ance matrices. This pattern was also observed in task-space mechanical impedances, where the imped-

ances were naturally induced by the joint-space impedances (Figures 8, 9, and 10). This result indicates

a strong relation between mechanical impedances and task performance, where the optimal movement

was predominantly oriented along the most compliant direction of both task-space and joint-space me-

chanical impedances.

Table 1. Optimal movement parameters and L�, the closest distance between the whip and target

Target

Optimal movement parameters

L�ðmÞq0;i;J1 q0;i;J2 q0;i;J3 q0;i;J4 q0;f ;J1 q0;f ;J2 q0;f ;J3 q0;f ;J4 D

1 � 1:361 0:000 � 0:349 1:414 1:728 0:000 0:000 1:414 0:950 0:000

2 � 0:943 0:000 � 1:047 1:414 1:728 � 1:047 0:000 0:471 0:950 0:000

3 � 0:943 1:047 0:000 1:414 1:728 � 1:047 0:000 1:414 0:583 0:000

4 � 1:548 0:000 � 0:349 1:414 1:728 0:000 0:000 0:367 0:950 0:000

5 � 1:082 1:047 1:047 0:820 1:728 � 1:047 1:396 0:157 0:950 0:000

6 � 0:943 1:060 0:349 0:995 1:740 � 0:970 � 0:272 0:948 0:525 0:102

L� = 0 denotes that the whip hit the target. Subscript J1�J4 correspond to the joints of the upper-limb model (Figure 11).

Units of q0 and D are radian and second, respectively.
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DISCUSSION

Manipulating soft, flexible, deformable objects poses significant challenges. Unlike the control of rigid ob-

jects, their infinite-dimensional structure exacerbates the complexity of the control problem.15,16 These

challenges are highlighted by the shortcomings of popular optimization-based approaches — they scale

poorly with system dimension. Known as the ‘‘curse of dimensionality’’,17 the complexity of optimization

grows exponentially with the number of DOF and with the number of time-samples included in the compu-

tation. Even with modern computational resources, real-time optimization of Lagrangian dynamic systems

with as few as tens of DOF is still profoundly challenging.18 Despite these challenges, humans excel at

manipulating soft, flexible, deformable objects as demonstrated in a recent experimental study by our

group.5 Complementary to that experimental study that analyzed data of the human hand and whip, the

current study simulated, i.e., synthesized, a similar action.

This simulation study examined whether targets at various locations could be reached with a simple model

of the arm controlled by simple control components, or ‘primitives’.19 Specifically, we tested whether a

whip could be manipulated with a minimum-jerk movement whose parameters were learned through optimi-

zation. This required coordination of four actively controlled joints to control a system with 108 state-space

dimensions. Assuming a coarse sampling rate of 4Hz (once every 250ms), the corresponding Nyquist

A

B

C

Figure 3. Simulation results for targets 1, 2, and 3, shown in panels A, B, and C, respectively

(Left column) Time-sequence of upper-limb and whip model. Three frames of the simulation were taken: at the start of the

movement, at the moment when the whip hit the target, and a moment between the two. Black circles depict the

shoulder, elbow and hand of the upper-limb model. Purple circles depict the point-masses of the whip model. Opacity of

the color increases from the start to the end of the movement. (Right Column) Time-sequence of the corresponding

optimal trajectories of elbow and end-effector. Four frames are plotted from the start to the end of themovement, i.e., for

time 0% t%D, where D is the duration of the virtual (zero-torque) trajectory (Equation 3).
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frequency of 2Hz is just greater than 1.79Hz, which is the fastest oscillatory mode of the whip model (details of

themodal analysis of the linearizedwhipmodel are presented in the SupplementaryMaterials ‘‘Modal Analysis

of the Linearized Whip Model’’). With such sampling rate, a 1-s-long simulation of a 108-dimensional system

lies in a spacewith 4108z1065 sample points. A complete search of this space would be profoundly impractical.

However, encoding upper-limb action using the parameters of discrete smooth movements simplified the

optimization. Our results showed that the optimization successfully managed the complexity of this extremely

high-dimensional problem, and thereby escaped the curse of dimensionality.

With reference to the five questions raised in the introduction, the results to the corresponding questions

can be summarized as follows:

1. A single discrete movement planned in joint-space coordinates was sufficient to reach various target

locations.

2. The proposedmethod was able to obtain the optimal solution in 250 iterations or fewer, with amaximum

of 249 iterations for target 5 and a minimum of 39 iterations for target 3 (Figure 2). This method did not

require sophisticated computational resources, nor any collection of human data for demonstration.

A

B

C

Figure 4. Simulation results for targets 4, 5, and 6, shown in panels A, B, and C, respectively

(Left column) Time-sequence of upper-limb and whip model. Three frames of the simulation were taken: at the start of the

movement, at the moment when the whip hit the target (for target 6, at the moment when the whip and the target were

closest), and a moment between the two. Black circles depict the shoulder, elbow and hand of the upper-limb model.

Purple circles depict the point-masses of the whip model. Opacity of the color increases from the start to the end of the

movement. (Right Column) Time-sequence of the corresponding optimal trajectories of elbow and end-effector. Several

frames are plotted from the start to the end of the movement, i.e., for time 0% t%D, whereD is the duration of the virtual

(zero-torque) trajectory (Equation 3).
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3. Within the 9 optimal movement parameters, striking the target was most sensitive to movement

duration (Figure 7). Even a small deviation (10ms–40ms) from the optimal duration resulted in failure

to hit the target.

4. For all targets, the optimal hand movement was essentially planar.

Table 2. Planar surface deviation (PSD), the normal vector n and centroid c of the best-fit plane of the optimal hand

movements

Target PSD (m) Normal Vector n (m) Centroid c (m)

1 0:012 ½ � 0:002; �0:976; 0:220� ½0:076; � 0:050; �0:102�
2 0:059 ½ � 0:426; 0:711; � 0:560� ½0:082; 0:065; �0:197�
3 0:039 ½ � 0:361; 0:744; � 0:562� ½0:181; � 0:058; �0:154�
4 0:014 ½0:085; � 0:984; 0:158� ½0:090; � 0:059; �0:183�
5 0:065 ½0:686; � 0:689; 0:235� ½0:011; 0:062; �0:244�
6 0:026 ½0:566; � 0:748; �0:347� ½0:156; � 0:097; �0:247�
The movements were generated from the movement parameters of Table 1.
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Figure 5. Optimal end-effector movement for targets 1, 2, and 3, shown in panels A, B, and C, respectively

(Left Column) The end-effector trajectory (Figure 3, right column) and its best-fit plane. The centroid c and the normal

vector n of the best-fit plane are depicted respectively as a diamond symbol and an arrow originating from it. The square

depicts the shoulder’s location. (Right Column) Corresponding weights of the eigenmovements, wi , i = 1, / 4 of the

optimal upper-limb movement vs. time (Equation 6). Values between the start and end of the movement are plotted, i.e.,

the width of the x-axis is D, the duration of the virtual (zero-torque) trajectory (Equation 3).
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5. The optimal movements were predominantly in the most compliant direction, both in intrinsic (joint-

space) and extrinsic (task-space) coordinates.

Compared to state-of-the-art research,20–22 the two primary contributions of this work are:

� Computational and data efficiency of the approach. In contrast to modern learning approaches,20,21

the dynamic manipulation tasks were achieved without requiring a large amount of pre-collected

data. An optimal solution was found within 250 iterations, which is significantly fewer than these

state-of-the-art methods.

� Insensitivity to the dimensionality or complexity of the manipulated object. In contrast to the trajec-

tory optimization methods, which are influenced by the dimensionality of the object,22 our approach

was unaffected by such considerations. Given a well-defined objective function (e.g., the minimum

distance between the tip of the whip and target), our approach can successfully manipulate objects

with high dimensionality and complexity.
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Figure 6. Optimal end-effector movement for targets 4, 5, and 6, shown in panels A, B, and C, respectively

(Left Column) The end-effector trajectory (Figure 4, right column) and its best-fit plane. The centroid c and the normal

vector n of the best-fit plane are depicted respectvely as a diamond symbol and an arrow originating from it. The square

depicts the shoulder’s location. (Right Column) Corresponding weights of the eigenmovements, wi , i = 1, / 4 of the

optimal upper-limb movement vs. time (Equation 6). Values between the start and end of the movement are plotted, i.e.,

the width of the x-axis is D, the duration of the virtual (zero-torque) trajectory (Equation 3).
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Using primitive actions to learn complex object manipulation

Recent state-of-the-art machine learning algorithms proposed ‘structured policy methods’ to tackle high-

dimensional optimization problems.23–28 Compared to model-free reinforcement learning methods that

are notoriously expensive in terms of their sampling complexity,29,30 structured policy methods alleviate

computational complexity by first embedding predefined structures in the controller and then training

the control policy to learn the optimal parameters of those structures. This approach has been successful

in reproducing a rich repertoire of motions, e.g., bicycle stunts31 and various locomotion skills for quadru-

peds.32 These methods could also generate soft, flexible and deformable object manipulation where a

small set of motion primitives enabled robots to manipulate cloths27 and disentangle multi-cable knots.28

Nevertheless, the cloth-manipulation study27 required over 100,000 iterations for their optimization to

converge, while the knot-disentangling study28 required 7,000 images to train their controller. Importantly,

the choice of structure, or representation, impacted the learning, robustness, and motion quality of the

controller, and the best form for the embedded structure has remained unresolved.26
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Figure 7. Sensitivity of task performance to the movement parameters for targets 1 to 5

Gray bars depict the upper and lower bounds of the search space of the DIRECT-L optimization algorithm. The upper

(respectively lower) error bar depicts the upper (respectively lower) value of the error to miss the target. Dots within the

error bar depict the optimal movement value (Table 1). T1 to T5 denote target 1 to target 5, respectively.
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The work reported here resembles a structured policy method, but the structures were formulated in

terms of biologically inspired motor primitives — robust patterns found in prior human neuroscience

research.7–10,33,34 A feedforward open-loop motion command using a minimum-jerk trajectory with con-

stant joint-space impedance terms, derived from experimental measurements, was sufficient to achieve

the task. This approach enabled convergence to the optimal set of movement parameters in less than

250 iterations — a maximum of 249 iterations for target 5, a minimum of 39 iterations for target 3 (Figure 2).

This is a dramatically smaller number than state-of-the-art machine learning algorithms which typically

require many thousands of iterations.27 For target 6, which was located at the highest and most distant

location, the closest distance between the whip and target was 10cm. This error suggests that a single prim-

itive movement may not be sufficient to reach all targets. Whether two or more submovements might suf-

fice is a topic for future studies. It is also important to note that the optimal movement parameters were well

within the ranges used by the search algorithm (Tables 1 and 3). Hence, it is unlikely that movements of

shorter (or longer) duration and/or range would achieve results better than those reported here.

It is worth emphasizing that this approach was judiciously biomimetic. It was based on the hypothesis that hu-

mans achieve their remarkable dexterity by taking advantage of motor primitives. Without any detailed
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Figure 9. Task-space stiffness ellipsoids for targets 1, 2, and 3, shown in panels A, B, and C, respectively

(Left Column) Time-sequence of upper-limb (black) and its stiffness ellipsoids. Four frames of the simulation were taken:

at the start of the movement, at the end of the movement, and frames between the two. The iso-potential energy surface

of the task-space impedance Kp is plotted as an ellipsoid, i.e., the width of the ellipsoid is inversely proportional to the

eigenvalue of Kp. Red arrow depicts the eigenvector of Kp with the smallest eigenvalue. Blue arrow depicts the velocity of

the hand. (Right Column) Corresponding weights of the eigenvectors, wi , i = 1,2,3 of the stiffness ellipsoid vs. time

(Equation 8). Values between the start and end of the movement are plotted, i.e., the width of the x-axis is D, the duration

of the virtual (zero-torque) trajectory (Equation 3).
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representation of the object being manipulated, the approach was highly effective to manage the complexity

of an extremely high-dimensional system. This approach can be classified as ’model-free’ learning, since by

using parameterized motor primitives, it operated without relying on a detailed model of the underlying sys-

temdynamics.35Moreover, our approach is distinct from ‘‘adaptive control methods’’ which pertain to tracking

controllers.35 Instead, the minimum-jerk trajectory planned in joint-space coordinates served as a ‘‘virtual tra-

jectory’’ connected to joint stiffness and damping, rather than a ‘‘desired trajectory’’ aimed at achieving per-

fect tracking. These results suggest that motor primitives are key structures humans use to achieve their

remarkable dexterity manipulating high-dimensional or even continuum dynamic objects.

The role of mechanical impedance

In this work, mechanical impedance was included to account for physical interaction between the hand and

whip.19,36–38 A dynamic operator which determines the force evoked by an imposed displacement, me-

chanical impedance ‘shapes’ the dynamics of interaction with the object being manipulated. Versatile

interaction with objects may be achieved by choosing a specific impedance, especially for tasks in which

simply mimicking a kinematic trajectory from a demonstrator may not be sufficient.39–42 A striking relation

between limb impedance and task performance was discovered: the optimization algorithm converged to
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Figure 10. Task-space stiffness ellipsoids for targets 4, 5, and 6, shown in panels A, B, and C, respectively

(Left Column) Time-sequence of upper-limb (black) and its stiffness ellipsoids. Four frames of the simulation were taken:

at the start of the movement, at the end of the movement, and frames between the two. The iso-potential energy surface

of the task-space impedance Kp is plotted as an ellipsoid, i.e., the width of the ellipsoid is inversely proportional to the

eigenvalue of Kp. Red arrow depicts the eigenvector of Kp with the smallest eigenvalue. Blue arrow depicts the velocity of

the hand. (Right Column) Corresponding weights of the eigenvectors, wi , i = 1,2,3 of the stiffness ellipsoid vs. time

(Equation 8). Values between the start and end of the movement are plotted, i.e., the width of the x-axis is D, the duration

of the virtual (zero-torque) trajectory (Equation 3).
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movements predominantly in the most compliant direction. This result is reminiscent of previous experi-

mental observations, in which mechanical impedance decreased with practice.43,44

These results indicate that limb mechanical impedance may be an important factor in determining the

optimal movement. For all targets, the optimal hand movement was essentially a planar movement. If

the dimensionality of the movement is considered as a measure of its complexity, a planar motion (which

recruits shoulder and elbow flexion/extension) is arguably the ‘simplest’ motion that can accomplish the

task. Moreover, a predominantly planar hand action evoked a predominantly planar whip motion. As a

result, the targeting task could be achieved within a 27-dimensional subset of the 54-dimensional config-

uration space of the whip (25 whip DOF plus 2 limb DOF). Reducing the relevant dimensions of configura-

tion space by half is arguably a substantial simplification.

While the objective of striking a target with a whip was successfully achieved using constant joint-space

impedances, the possibility of variable joint-space impedances for control purposes is not precluded by

this result. Prior research showed that impedance modulation was necessary to achieve complex manipu-

lation tasks, e.g., managing physical interaction with the environment.45,46 In fact, incorporating time-vary-

ing joint-space impedances into the controller could potentially broaden the range of targets that can be

successfully hit by the whip, e.g., target 6. Investigating the potential advantages of variable joint-space

impedances for complex object manipulation is a topic for future studies.

A human-inspired approach

Human sensory-motor capabilities far exceed those of contemporary robots, even though our actuation,

communication, and computation are orders of magnitude slower than those of robotic systems. The fastest

neural transmission speed in humans is about 100 m/s,47,48 about a million times slower than its robotic coun-

terparts which can reach up to about 108 m/s. The bandwidth of skeletal muscle is considerably less than

10Hz,47 whereas electromechanical technology routinely achieves bandwidths in excess of hundreds of Hz.49

Since the slow neuromuscular system impairs reactive feedback control, humanmotor control relies heavily

on predictive feedforward action. However, a detailed prediction of a whip’s behavior would be quite un-

workable for real-time control, even with modern computational resources. A practical alternative is to

simplify control by taking advantage of the whip’s natural behavior. Experimental results by our group re-

ported a propagating wave in the whip, with a speed profile strikingly similar to the speed profile of discrete

human movements.5 Hence, a bell-shaped speed profile as the basic movement shape may be sufficient to

manipulate a whip, and the results in this paper have demonstrated that the approach successfully

achieved the targeting task.

A human operates the whip via its handle, but the upper limb hasmore DOF than the handle, so that a spec-

ified handmotion does not uniquely determine corresponding joint motions. How the biological controller

Table 3. Model parameters

Description Notations Values Unit

Geometric and Inertial Parameters

of Limb Segments

Mass of limb segment M1;M2 1.595, 0.869 (kg)

Length of limb segment L1;L2 0.294, 0.291 (m)

Length from proximal joint to COM L1c ;L2c 0.129, 0.112 (m)

Principal moment of inertia, x0- axis I1;xx ; I2;xx 0.0119, 0.0048 ðkg $m2Þ
Principal moment of inertia, y 0- axis I1;yy ; I2;yy 0.0119, 0.0049 ðkg $m2Þ
Principal moment of inertia, z0- axis I1;zz ; I2;zz 0.0013, 0.00047 ðkg $m2Þ

Parameters of the Whip Model Number of sub-models (i.e., node number) N 25 (�)

Value of point-mass m 0.012 (kg)

Length of massless cylinder l 0.072 (m)

Coefficient of rotational spring k 0.242 ðN $m =radÞ
Coefficient of rotational damper b 0.092 ðN $m $s =radÞ

Subscripts 1 and 2 denote the upper arm and forearm, respectively. Principal moments of inertia of limb segments were calculated with respect to the center of

mass (COM) (Figure 11).
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manages this ill-posed inverse kinematic map from hand motions to joint motions is presently unknown.36

To focus on the feasibility of managing the whip with pulse-like ‘building-block’ motions, this problem was

circumvented by assuming minimum-jerk motion profiles in joint space. The resulting hand paths are

mostly vertically oriented and curved, not unlike the hand paths reported by Atkeson and Hollerbach.8

Previous work has argued that human neuromotor performance appears to be a composition of motor

primitives.50,51 These are defined as patterns of behavior that manifest as stable attractors of the (nonlinear)

neuromechanical system. They are conceived as building blocks that can be parametrized and combined to

produce complex behavior.52–54 At least three distinct classes of primitives have been identified — sub-

movements (for non-repetitive point-to-point movements), oscillations (for rhythmic, repetitive move-

ments), and mechanical impedance (to manage physical interaction with the environment). Related work

in robotics has demonstrated that dynamic movement primitives are a powerful method for planning robot

trajectories based on demonstration.55–60 Their effectiveness has been proven in a variety of domains,

including biped locomotion,61 placing and pouring62 and dart throwing.63 Nevertheless, to the best of

our knowledge, the main focus of this body of research was on unconstrained movements or on the manip-

ulation of rigid objects with comparatively few DOF. Tasks as dynamically complex as manipulating a whip,

as reported in this paper, have not yet been fully explored.

Task performance and motor precision

This study simulated a complex manipulation task where the goal was to hit targets at several locations with

a 50-DOF whip model. Considering the nonlinear dynamics of such a high-dimensional system, deviations

from the optimal movement were expected to result in large errors, and they did. Assuming control based

on dynamic motor primitives, learning complex motor skills would consist of finding the optimal parame-

ters of the ‘building blocks’. Once these optimal parameters were learned, initiating the optimal action

J3
J2

J1

J4

W1 W2

A B

C

Figure 11. Model used for the simulation

(A) Simulation model in its virtual configuration, rendered with the MuJoCo simulator.

(B) Model of the upper limb and its model parameters. Rotational joints of shoulder (J1-J3), elbow (J4) and their axes of

rotation are visualized as bullet shapes. Joints J1-J4 were equipped with torque actuators.

(C) Sub-model of the whip and its model parameters. Each rotational joint is equipped with a linear rotational spring k and

rotational damper b, visualized as bullet shapes.
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would consist of retrieving those parameters. However, themotor variability of humans—natural variations

in posture, movement and muscle activity of human motor control64,65 — prevents perfect repetition of the

optimal action. Even skilledmovements of experts showed variability across repetitions, discussed by Bern-

stein in his famous blacksmith example and known as ‘‘repetition without repetition’’.66 Our sensitivity anal-

ysis considered the variability of human motor control by quantifying the effect of deviations from the

optimal movement parameters (Table 3). The results emphasized the challenge of accurately striking a

target. In fact, a whip expert who was able to hit a distant target with a success rate of only about 90%

had more than 15 years of experience.4

Limitations of the study

The current study focused on complex object manipulation in simulation without actual robot implemen-

tation. Future studies are necessary to extend the study from simulation to actual robot experiments.

Conclusions

Despite the significant limitations of our neuromuscular system, humans manipulate flexible, deformable

objects of prodigious dynamic complexity with apparent ease. The simulations presented here showed

that encoding action based on the parameters of motor primitives enabled optimization to control a flex-

ible object with extremely complex dynamics — a whip. Robotic manipulation of flexible materials con-

tinues to pose a significant challenge. Control based on primitives may provide a novel and effective

way to control soft, flexible, dynamically complex objects.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Moses C. Nah (mosesnah@mit.edu).

Materials availability

The study did not generate any new unique reagents, nor are there any restrictions on their availability.

Data and code availability

All data, code, images are available in https://github.com/mosesnah-shared/whip-project-targeting and

the Data S2.

METHOD DETAILS

Simulations were performed using the MuJoCo simulator.67 Numerical integration used the semi-implicit

Euler method with a time step of 0.1ms (10,000Hz).

Modeling

Upper-limb model - The manipulator

The human upper limb was modeled as a two-bar open-chain linkage. Everything distal to the wrist (i.e.,

hand, fingers etc.) was omitted from this model. The two limb segments — the upper arm (which extends

from the shoulder to the elbow), and the forearm (which extends from the elbow to the wrist) — were

treated as non-uniform cylinders. The geometric and inertial parameters of the limb segments were ob-

tained from a computational model by Hatze (Table 3).68

The upper-limb model had four actively-controlled DOF— three DOF at the shoulder and one DOF at the

elbow. The glenohumeral joint of the shoulder was modeled as a 3-DOF spherical joint that was fixed in

space, i.e., translational movements of the shoulder were omitted from the model.69 The rotational move-

ments of the 3-DOF shoulder joint were modeled as a sequence of three rotational joints whose axes of

rotation were initially orthogonal — denoted as J1, J2 and J3 (Figures 11A and 11B). The three rotational

joints in order corresponded to flexion/extension (J1), adduction/abduction (J2) and lateral/medial rota-

tion (J3). The movement of the elbow was modeled as a single-joint elbow flexion/extension (J4). Supina-

tion/pronation of the forearm was omitted from the model. At all four joints, independently controlled tor-

que actuators were mounted co-axially.

Whip model - The manipulated object

The continuous dynamic behavior of a whip was modeled as an equivalent lumped-parameter model, in

which the continuum was approximated and replaced by a finite-DOF system composed of lumped ele-

ments (Figures 11A and 11C).70 Each sub-model of a whip consisted of an uniform sphere mass, a massless

cylinder, a linear rotational spring and a linear rotational damper. The sphere massm was suspended from

a massless cylinder with length l (Figure 11C). The radius of the sphere was 2cm. The other end of the mass-

less cylinder was equipped with a 2-DOF universal joint, which consisted of two rotational joints whose axes

of rotation were orthogonal. Each rotational joint was equipped with a linear rotational spring and a linear

rotational damper, with coefficients k and b, respectively (Figure 11C). Values of the whip parameters were

borrowed from an ‘‘experimentally-fitted’’ whip model, where the values were derived from experimental

observations of an actual bullwhip (Table 3).13,71 25 identical sub-models were serially connected in an end-

to-end chain-like arrangement, which comprised a 50-DOF whip model.

The connection between the two models

To introduce no torque for the connection between the whip and upper-limb model, the k and b of the

whip’s sub-model which directly attached to the end-effector of the upper-limb model were set to zero.

Summarizing, the whole system resulted in a 54-DOF open-chain linkage.
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Upper-limb controller

Impedance controller with gravity compensation

To account for physical interaction between the upper limb and the whip, the upper-limbmodel included a

first-order joint-space impedance controller with gravity compensation:12,13,72

t = Kq

�
q0 � q

�
+ Bq

�
_q0 � _q

�
+ tG (Equation 1)

In this equation, tðtÞ˛R4 denotes the net torque input commanded on the joint actuators; tGðtÞ˛ R4 de-

notes gravity compensation torque; qðtÞ˛R4 denotes the actual joint angle displacement measured from

the virtual configuration (Figure 11B); q0ðtÞ˛R4 represents the virtual trajectory of the impedance

controller, which is referred to as ‘‘zero-torque trajectory’’, i.e., neglecting gravitation effects, if the actual

joint angle trajectory q exactly matches the zero-torque trajectory q0, no torque is exerted by the actuators.

Subscripts 1 to 4 correspond to joints J1 to J4, respectively (Figure 11B); the zero-torque trajectory q0ðtÞ is
the feedforward motion command of the controller which generates the upper-limb movement; Kq;Bq ˛
R434 are constant symmetric joint stiffness and damping matrices, respectively.

Gravitational effects were compensated with tG, such that the actual upper-limb posture q could exactly

match with the zero-torque posture q0 when the whole model was at rest:12

tG = JT01f1;G + JT02f2;G + JT03f3;G (Equation 2)

where Jij ˛R334 is a Jacobian matrix of frame j relative to frame i; fi;G ˛R3 denotes the gravitational force

applied to frames i = 1; 2 and 3, which are attached to the center of mass of the upper-limb, center of mass

of the lower-limb and the hand, respectively.12

Motion planning – Zero-torque trajectory

The zero-torque trajectory q0ðtÞ (Equation 1) of the upper-limb model followed a discrete rest-to-rest min-

imum-jerk profile in joint-space coordinates12:

q0ðtÞ = q0;i +
�
q0;f � q0;i

�
$

(
10

�
t

D

�3

� 15

�
t

D

�4

+ 6

�
t

D

�5
)

(Equation 3)

where subscripts i and f denote the initial and final (zero-torque) postures, respectively. For times greater

than duration D (i.e., t >D), the zero-torque trajectory of the upper limb remained at the final posture q0;f.

The zero-torque trajectory q0ðtÞ was determined by 9 movement parameters: 4 for initial posture q0;i, 4 for

final posture q0;f, and 1 for movement duration D.

Stiffness and damping matrices for the joint-space impedance controller

The values of the stiffness matrix Kq and damping matrix Bq used for the joint-space impedance controller

(Equation 1) were based on measurements of human subjects:73–75

Kq =

2
664

17:4 6:85 � 7:75 8:40
6:85 33:0 3:70 0:00
� 7:75 3:70 27:7 0:00
8:40 0:00 0:00 23:2

3
775;Bq = 0:05Kq (Equation 4)

Details of deriving the Kq and Bq matrices are presented in the Supplementary Materials, ‘‘Stiffness and

Damping Matrices of the Impedance Controller’’.

Evaluation metrics of the upper-limb movements

Data to evaluate the upper-limb movements were extracted with a sampling rate of 60Hz.

Best-fit plane and planar surface deviation (PSD)

To qualitatively assess the optimal upper-limb movements, the planarity of the upper limb’s end-effector (or

hand) trajectory was calculated. The planarity of the movement was analyzed to check whether the movement

in three-dimensional space can be reduced to a motion in two-dimensional space. To calculate the planarity of

the hand trajectory, the best-fit plane and the corresponding planar surface deviation (PSD) of the end-effector’s

trajectory were calculated.76 If the value of planar surface deviation is small, then the corresponding optimal

movement in 3D space is regarded to be ‘planar’ and the movement is approximated as a planar movement.
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Given a set of sample points of the trajectory, the best-fit plane minimized the squared sum of orthogonal

distances between the plane and the points:77

n $ ðx � cÞ = 0

In this equation, x˛R3 denotes the Cartesian position of an arbitrary point which lies on the best-fit plane;

n; c˛R3 are the unit normal vector and the centroid of the best-fit plane, respectively.77 Centroid c was

derived by:

c =
1

Ns

XNs

i = 1

pi

In this equation, Ns denotes the number of sample points and pi ˛R3 denotes the ith sample point of the

Cartesian position of the hand. n is derived by taking the normalized eigenvector corresponding to the

smallest eigenvalue of the 3D covariance matrix of Ns sample points.77

The corresponding PSD of the best-fit plane was calculated by taking the root mean square of the orthog-

onal distances between the Ns sample points and the best-fit plane:

PSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i = 1

	
n$
�
pi � c

�
2
vuut (Equation 5)

Eigenstructure analysis of joint-space impedances

With the controller assumed in Equation 1, mechanical impedance plays a key role in the production of tor-

que to move the limb. To assess the relation between the optimal joint-space action and the choice of me-

chanical impedance, the optimal joint-space movement was projected onto the eigenstructure common to

the Kq and Bq matrices (Equation 4). A movement of the 4-DOF upper-limb model was decomposed as a

unique weighted linear combination of the eigenvectors of matrix Kq:Given their key role in the production

of movement, these eigenvectors were termed the ‘‘eigenmovements’’ of the upper-limb model.

q0 � q (Equation 1) was described as a linear combination of the eigenmovements:

q0 � q = w1v1 +w2v2 +w3v3 +w4v4 (Equation 6)

In this equation, v1;/v4 ˛R4 are the orthonormal eigenvectors of the stiffness matrix Kq and coefficients

w1;/w4 ˛R are the corresponding weights; subscripts are numbered in ascending size order of the corre-

sponding eigenvalues. The eigenvectors and corresponding eigenvalues are presented in the Supplemen-

tary Materials, ‘‘Eigenmovements and the Corresponding Eigenvalues’’.

To quantify the total ‘‘contribution’’ of the ith eigenmovement to the upper-limb movement, the square

root of the sum of the squared wi-values from the onset to the end of the movement with duration D (Equa-

tion 3) was calculated. The weight with the highest value was identified, and the corresponding eigenmove-

ment was regarded as making the highest contribution.

Eigenstructure analysis of task-space impedances

To assess the relation between the optimal end-effector movement and the choice of mechanical imped-

ance, the optimal end-effector movement was also projected onto the eigenstructure of the task-space im-

pedances. The relation between task-space and joint-space impedances is:78,79

Kp =
�
J03K

� 1
q JT03

�� 1

;Bp =
�
J03B

� 1
q JT03

�� 1

(Equation 7)

In these equations, Kp;Bp ˛R333 are symmetric task-space stiffness and damping matrices, respectively.

The kinematic stiffness term which emerges from the change of Jacobian matrix was neglected for the

calculation.80

The optimal end-effector velocity, vEE ˛R3 was decomposed as a unique weighted linear combination of

the eigenvectors of matrix Kp and quantified how much the instantaneous hand movement was aligned

along the eigenvectors of Kp:

vEE = w1v1 +w2v2 +w3v3 (Equation 8)
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In this equation, v1; v2; v3 ˛R3 are the orthonormal eigenvectors of the symmetric stiffness matrix Kp and

coefficients w1;w2;w3 ˛R are the corresponding weights; subscripts are numbered in ascending size order

of the corresponding eigenvalues.

To quantify the alignment of the instantaneous hand movement along the eigenvectors of Kp, the square

root of the sum of the squared wi-values from the onset to end of the movement with duration D (Equa-

tion 3) was calculated. The weight with the highest value was identified, and the corresponding eigenvector

was regarded as the direction with which the hand movement was most aligned.

Optimization of the whip task

The task of reaching a spatial target with a whip was quantified as minimizing the distance between the

whip and the target with a single discrete upper-limb movement. The target was modelled as a massless

sphere with radius of 3cm. The distances between 25 nodes of the whip and the center of the target were

tracked, and within these 25 nodes, the node that achieved the minimum distance with the target was used

for the evaluation. This minimum distance L� reached with a single discrete upper-limb movement served

to assess performance. Formulating the targeting task as an optimization problem, the objective was to

find the optimal 9 movement parameters ðq0;i;q0;f;DÞwhich minimized L�. Optimization was performed us-

ing the DIRECT-L algorithm in the NLopt Python toolbox.

Six targets with different distances and directions were defined for the targeting task. Targets 1, 2 and 3

were located closer to the shoulder to be well within reach, and targets 4, 5 and 6 located further from

the shoulder to be just outside the range of reach (Figure 1). The optimization halted when the whip hit

the target, or when the maximum iteration of 600 was conducted. When one of the 25 nodes of the whip

hit the target, L� was set to be 0m.

Sensitivity analysis of the optimal movement parameters

Sensitivity of task performance to the movement parameters was quantified by calculating the amount of

error required tomiss the target. Sensitivity analysis was conducted for targets 1 to 5, since for these targets

the optimal parameters exist to hit the target. To identify the sensitivity of one movement parameter on the

task performance, each of the 9movement parameters were varied, while all other parameters were fixed to

their optimal values (Table 1). For eachmovement parameter, the upper and lower value of the error tomiss

the target was identified. If the interval of the error was small, then the correspondingmovement parameter

was regarded to be sensitive for the task performance.
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