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Novel Platform for Quantitative Assessment of
Functional Object Interactions After Stroke
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Abstract— Many persons with stroke exhibit upper
extremity motor impairments. These impairments often
lead to dysfunction and affect performance in activities of
daily living, where successful manipulation of objects is
essential. Hence, understanding how upper extremity motor
deficits manifest in functional interactions with objects
is critical for rehabilitation. However, quantifying skill in
these tasks has been a challenge. Traditional rehabilitation
assessments require highly trained clinicians, are time-
consuming, and yield subjective scores. This paper intro-
duces a custom-designed device, the “MAGIC Table”, that
can record real-time kinematics of persons with stroke
during interaction with objects, specifically a ‘cup of coffee’.
The task and its quantitative assessments were derived
from previous basic-science studies. Six participants after
stroke and six able-bodied participants moved a 3D-printed
cup with a rolling ball inside, representing sloshing coffee,
with 3 levels of difficulty. Movements were captured via a
high-resolution camera above the table. Conventional kine-
matic metrics (movement time and smoothness) and novel
kinematic metrics accounting for object interaction (risk and
predictability) evaluated performance. Expectedly, persons
with stroke moved more slowly and less smoothly than
able-bodied participants, in both simple reaches and during
transport of the cup-and-ball system. However, the more
sensitive metric was mutual information,which captured the
predictability of interactions, essential in cup transport as
shown in previous theoretical research. Predictability sensi-
tively measured differences in performance with increasing
levels of difficulty. It also showed the best intraclass consis-
tency, promising sensitive differentiation between different
levels of impairment. This study highlights the feasibility
of this new device and indicates that examining dynamic
object interaction may provide valuable insights into upper
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extremity function after stroke useful for assessment and
rehabilitation.

Index Terms— Motor impairment assessment, stroke,
quantification of functional skill, low-cost portable ther-
apy device, complex-object manipulation, ecologically valid
task.

I. INTRODUCTION

UPPER extremity (UE) motor impairment is common after
stroke, affecting nearly two-thirds of the survivors [1].

Upper extremity motor deficits, such as muscle weakness,
changes in muscle tone, and dexterity are a common cause of
stroke-related disability [1], [2]. Current assessments of upper
extremity impairments after stroke, such as the upper extremity
Fugl-Meyer scale (UE-FMA) require a highly trained clinician
to administer and their execution is time-consuming and sub-
jective; in addition, the scales are prone to ceiling effects [3],
[4], [5]. Tests that are specifically designed to assess functional
abilities, such as the Wolf Motor Function Test (WMFT) or the
Action Research Arm Test (ARAT), involve scores that rely on
course-grained and subjective ratings [6], [7]. Although these
tests serve as gold standards in clinical research, the scores
do not adequately reflect the individual’s ability to engage in
activities of daily living, such as performing hygiene or eating
and drinking [3], [8]. Success in these essential tasks hinges
on the ability to manipulate objects.

Many objects that individuals interact with in daily life have
internal dynamics that must be managed for successful use [9],
[10], [11]. Such interactions pose challenges to coordination
that are absent in unconstrained movements which have been
predominant foci of motor neuroscience research [12]. For
example, when leading a cup of coffee or a glass of water
to one’s mouth, the hand applies a force not only to the
cup, but also indirectly to the liquid which acts back on the
hand, potentially perturbing its trajectory [13]. The hand must
make subtle adjustments to avoid spilling. Even though such
interactive tasks are essential in daily life, it has been difficult
to concisely measure performance [8].

Using the example of transporting a cup of coffee, Sternad
and colleagues developed an experimental testbed that enabled
quantitative measurements of interactions with an object that
has nonlinear internal dynamics. The experimental paradigm
simplified the task to moving a cup with a rolling ball
inside (Fig.1A) [9], [14], [15]. This system was modeled
with a known mechanical model, a cart with a suspended
pendulum moving on a frictionless line (Fig.1B). By studying
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Fig. 1. A. Hand grasping a cup of coffee. The cup of coffee was
simplified to a two-dimensional arc with a rolling ball inside representing
the sloshing coffee. B. Mechanical model of a cart with a suspended
pendulum to represent the dynamics of the object. C. Implementation of
the task in a virtual environment. Subjects controlled the position of the
2D cup via a robotic manipulandum, with the handle shown in the inset.
The ball forces were transmitted back on their hand. D. Screen display
with the cup and ball and the target boxes as participants see during the
experiment.

interaction with a known system, the analysis could focus on
the object dynamics in the context of a task goal. This model
system was first implemented in a virtual environment where
the participant moved the cup-and-ball system via a robotic
manipulandum that also transmitted the force of the ball to the
hand (Fig.1C, D). The cup-and-ball system can display highly
varying and potentially chaotic dynamics, resulting in complex
interaction forces [9], [10]. Importantly, these nonlinear forces
evolve rapidly such that corrections based on perceived errors
are largely insufficient due to latencies in the sensorimotor
loop [16]. Hence, humans need to learn to predict and preempt
these forces. With the development of novel metrics, previ-
ous work found that neurotypical individuals aimed to make
interactions with the cup-and-ball system more predictable,
quantified by mutual information. Participants increased the
mutual information about the object dynamics by exploiting
resonance frequencies [15], [17], converging to the optimal
phase of the system [9], stabilizing internal dynamics [11],
[12], and appropriately initializing the object [10], [18].
Counter to common expectations, subjects did not minimize
expended effort, nor increase the smoothness of the object
kinematics [9], [10], [15]. Based on this rich set of insights
into how able-bodied humans perform this task, the present
study advanced this paradigm to a platform that can be used
to quantitatively evaluate upper extremity deficits in persons
with stroke [44].

To allow individuals with a wide range of motor capabilities
to be measured, the virtual task was converted to a real
three-dimensional task where subjects transported a cup with a
ball rolling inside on a smooth table surface [19] (Fig.2). The
MAGnetic Interactive and Creative Table, or MAGIC Table,
consisted of a camera above the table connected to a mobile
computer to track object kinematics in real time, eliminating
the need for marker-based recording. This portable device was
constructed out of low-cost and widely obtainable components.
This study demonstrates the feasibility and efficacy of the
MAGIC Table for assessment of upper extremity deficit in
persons with stroke.

Fig. 2. A. The MAGIC Table with the camera frame and webcam
mounted above the table. B. Subject sits at a table with two circular
targets drawn on the table surface. The subject moves the cup with the
ball rolling inside from one target to the other. A web camera was mounted
above the table surface to record the cup-and-ball kinematics in real time.
Participants wear a white smooth glove to color-match the table surface
and avoid errors in the color-based object detection. C. Cross-sectional
view of the 3D-printed cup visualizes the magnet at the bottom of the cup
and the metal green ball that rolls inside the orange bowl. The computer
vision algorithm distinguishes objects by color to extract shapes and their
position information.

Our study design and analysis were guided by the follow-
ing questions: 1) Do persons with upper extremity impair-
ments after stroke exhibit differences when performing this
functional task in comparison to able-bodied individuals?
2) Can we identify and quantify differences between the
dominant upper extremity in able-bodied individuals and the
“less affected” ipsilesional (same side as the lesioned brain
hemisphere) side in persons with stroke? 3) Are our measures
sensitive to identify differences between the ipsi- and contrale-
sional (opposite side to the lesioned brain hemisphere) sides in
persons with stroke? 4) Can our new task sensitively measure
differences in performance with different levels of challenge?
5) Can our new metrics differentiate performance between
persons with stroke that have distinct impairment levels? If
successful, the MAGIC Table presents a paradigm-changing
opportunity for rehabilitation: it allows quantitative assessment
with theory-based metrics in a task reflective of self-feeding.

II. METHODS

A. Design of the MAGIC Table

The MAGIC Table consists of a large white board (60.9 ×
91.4 cm) that is secured to a height-adjustable table (Fig.2A).
Circles can be drawn on the whiteboard to serve as targets for
movement tasks. Above the white board, a camera is mounted
on an overhead frame (EMART 8.5 × 10 ft Photo Backdrop
Stand), the camera was a variable focal-length webcam (RGB
ELP 2.8-12 mm, Varifocal Lens HD 1080P Webcam, PN:
ELP-USBFHD01MBFV). For testing in the hospital, a smaller
whiteboard (43.18 × 58.42 cm) could be fit on top of a bedside
table to enable participation by those that are bedridden. If less
space is available, a tripod can be attached to the table with
an adjustable clamp to position the camera above the board
(Fig.2B). A previous study employed this set-up for collecting
data from dystonic children who were in a hospital bed [19].

The cup was 3D-printed (using orange thread) to allow for
customization of size and diameter. A 67 g steel ball, painted
green, was placed inside the cup (BC Precision). The two
colors were chosen to achieve maximum contrast for detecting
and differentiating the ball from the cup background (Fig.2C).
The cup was fixed to a 3D-printed base with an ergonomic
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Fig. 3. Stages of the experiment setup and execution as seen on the
portable computer. A. View of finder screen with which the experimenter
adjusts the camera position. B. Five-point matching procedure from the
camera to the whiteboard. C. Detection of shapes by the color vision
algorithm. D. Real-time video feed tracking the cup and the ball.

handle. A height-adjustable magnet was screwed to the base
of the cup to create attraction forces that prevented any tilting
or raising of the cup, which would have distorted the kinematic
recordings (McMaster PN: 7132T25, Diameter: 2.57 in). The
distance between the magnet and the table could be adjusted
to tune the magnetic strength to ensure that the cup glided
easily across the surface while remaining in contact with the
whiteboard. The legs at the bottom of the cup were covered
with low-friction felt. The total cost to build the MAGIC
Table was less than $200 (excluding the price of the computer
for data acquisition). The itemized costs were the following:
magnetic whiteboard ($30), RGB webcam ($55), and parts for
the 3D-printed cup ($70).

The USB 2.0 connector of the camera was plugged into a
Microsoft Surface Pro 4 tablet PC (i5-6300U, 8GB RAM). The
MAGIC Table algorithms for registration, target recognition,
and task execution were written in Python and were run
via one custom-developed program. Fig.3 shows the stages
of setting up, calibrating, and executing the data acquisition.
At the start of each experiment, the camera was adjusted to
ensure the whiteboard was in view (Fig.3A). To keep the field-
of-view consistent across trials, the camera was adjusted so
that 5 points on a virtual overlay matched 5 fixed points
on the whiteboard (Fig.3B). Prior to each trial the centers
of the home and target circles were registered (Fig.3C). The
position of the cup was tracked by the camera with a computer
vision algorithm that recognized the center of the object in
each frame (Fig.3D). The frame rate was 80 frames per
second with a resolution of 640 × 480 pixels. More details
of the algorithm can be found in [19]. The code for real-time
object tracking in Python is provided in the online repository
(https://github.com/wonjsohn/MAGIC_Table_basic).

B. Experiment

1) Participants: The MAGIC Table was tested with six
persons after stroke and six able-bodied participants in a
feasibility experiment. Participant demographic and stroke

TABLE I
PARTICIPANT DEMOGRAPHICS

characteristics are summarized in Table I. Participants after
stroke were labeled as ‘PS’, and able-bodied participants were
denoted as ‘AP’. PS were tested with both their contralesional
(Contra) and and their ipsilesional (Ipsi) upper extremity. For
characterizing impairment severity of PS, NIHSS scores were
obtained within one month of the MAGIC Table testing.
If persons with stroke had a Fugl-Meyer assessment within
two weeks of their MAGIC Table experiment, their score
was included. Data from AP participants show performance
with their dominant upper extremity. All procedures were
approved by the Northeastern University Institutional Review
Board (IRB:18-08-01) and the Massachusetts General Hospital
Review Board (IRB:2017P000868). All participants provided
written informed consent.

C. Movement Task and Experimental Design

Participants were instructed to slide the cup-and-ball on the
whiteboard surface from a start circle to a target circle, and
then back to the start circle, as fast as possible without losing
the ball. The diameters of the two target circles were 14 cm
with a distance of 52 cm between the centers of the two targets
(see Fig.3). The movement was designed to allow individuals
with different impairment levels to perform the task. In the
starting position, the elbow was flexed and the cup rested on
the start circle; the ball was also at rest. The movement began
with an elbow extension towards the target circle, followed by
a flexion back to the start circle. When the participant executed
the task with their right upper extremity, the start and target
circles were placed in the southwest and northeast corners of
the board, respectively. When the participant executed the task
with their left upper extremity, the positions of the start and
target circles were mirrored to elicit the same extension-flexion
movement with their arm. If the PS had issues reaching the
target circle, they were encouraged to extend their upper
extremity as far as they could. During the movement the
upper extremity was not permitted to rest on the table surface.
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Fig. 4. Model sketches and 3D-printed rendering of the cup and ball with
different dimensions (radius of curvature and rim height); θ indicates the
angle of the rim height. A. Model of the Deep Cup No Ball. B. Model of
the Deep Cup With Ball. C. Model of the Shallow Cup With Ball. D. Real
3D-printed Deep Cup No Ball. E. Real 3D-printed Deep Cup With Ball.
F. Real 3D-printed Shallow Cup With Ball.

This required subjects to actively abduct their shoulder, and
then extend and flex their shoulder and elbow joints during
movement. Note, minimal wrist or hand movements were
needed to complete the task as the participants held the cup
handle with a comfortable grip. Subjects wore a white glove to
avoid interference of skin color with the color-based detection
of the cup and ball.

The difficulty of the task was manipulated by using cups
of different dimensions, i.e., different radius of curvature, and
different rim heights. Fig.4 shows three levels of difficulty
that were employed in this study. The easiest level was the
Deep Cup No Ball, because this object presented no additional
dynamics and essentially reduced the task to a simple reach
with a mass added to the hand. The cup radius of curvature
was 75 mm and its rim height was 55 deg, although radius
and rim height were irrelevant for this condition. The second
level of difficulty was the Deep Cup With Ball. The cup radius
and the rim angle were the same as before, but with the ball
added there was the risk of losing the ball if its angle exceeded
55 deg. The ball had a mass of 67 g and a radius of 1.1 cm.
The third level of difficulty was the Shallow Cup With Ball.
The cup radius was again 75 mm, but the cup had a rim height
of only 40 deg, making it easier for the ball to escape. The
ball had the same mass and radius.

Participants were seated at the long side of the MAGIC
Table instructed to move the cup upon an auditory “Go” signal
from the computer. When the cup returned to the start circle,
another bell sound was triggered to signal the successful finish
of the trial. Recordings for each trial ended when the center
of the cup had been inside the start circle for 3 s. Each
participant performed 20 trials for each condition in blocked
fashion. The six PS completed each level of difficulty in the
order of increasing difficulty with their ipsilesional side to
gain familiarity with the task, then with their contralesional
side. The six AP completed each level of difficulty in the
same ascending order with their dominant side first, then with
their non-dominant side. The experiment comprised a total of
120 trials and the experimental session lasted approximately
1 hour including the set up and the calibration.

1) Model of the Object and the Task: Even though the real
cup was a 3D object, the instructed cup movements were along
a line from the start to the target circle; hence the movements
were confined to one dimension. Therefore, the cup and ball
kinematics could be modeled using the same 2D cart-and-
pendulum model that was used in previous research, Fig.1 [9],
[10], [15]. Given that the angular movements of the ball were
confined to the direction of movement, the pendulum had only
one angular degree of freedom, and the following equations
of motion described the system:

(mc + mb)Ẍ = mbl[θ̇2sinθ − θ̈cosθ ]︸ ︷︷ ︸
Fball

+Finter (1)

θ̈ = − Ẍ

l
cosθ − g

l
sinθ. (2)

X was the cup position, θ was the ball angle; the downward
vertical orientation of the pendulum/ball defined 0 deg, with
counterclockwise rotations denoted as positive. The mass of
the cup was denoted by mc, the mass of the ball by mb, and
the length of the pendulum was l. Finter was the interaction
force applied by the participant onto the cup, and Fball was
the force applied by the ball onto the cup.

D. Data Processing and Definition of Metrics

The data was low-pass filtered with a 12 Hz cut-off fre-
quency using an 8th-order Butterworth filter. The kinematic
data was then linearly transposed such that the x-axis was
along the movement direction (the line between the center
of the start circle to the center of the target circle). The
kinematics along this dimension were analyzed using the
metrics described next. The data lent themselves for several
conventional and novel metrics to quantify performance in this
interactive task. All processing and analyses were performed
in MATLAB.

1) Movement Time: Previous work demonstrated that per-
sons with upper extremity deficits after stroke required more
time to execute a reaching task and the duration correlated
with functional scores [20], [21]. Hence, as a baseline measure,
movement time with the rigid object was compared to that with
the cup-and-ball object, with the hypothesis that movement
time slows down with the increased coordinative challenge.
Movement time comprised the time required to complete both
extension and flexion. The start and end of the movement
was defined at the moment when cup velocity in the direction
of movement was above a specified threshold. This threshold
was defined by the absolute cup velocity exceeding 5% of the
maximum velocity in the same trial.

2) Smoothness: Smooth movements express the continuity
of a movement and metrics of smoothness have been con-
sidered markers of skilled human motor behavior [22], [23].
Persons with stroke have been shown to exhibit intermittent,
i.e. less smooth velocity profiles in their upper-limb move-
ments, but their movements could become smoother during
recovery [24], [25], [26]. Due to the object-hand interactions,
we expect less smooth movements in the cup-and-ball task.
Several different metrics have been developed to quantify
smoothness of upper-limb movement, the most commonly
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used is mean squared jerk (the derivative of acceleration) [27].
However, this metric was shown to be sensitive to noise and
provided inconsistent results for movement in persons with
stroke [23], [28], [29]. The Spectral Arc (SPARC) method
proved to be more reliable in quantifying smoothness of
movement [23], [28], [29]. This metric estimated smoothness
in the frequency domain, making the values independent of
movement duration and amplitude.

The SPARC method applied a Fourier transform to the speed
profile of the cup movement, V (t), t ∈ [0, T ], to yield the
frequency magnitude spectrum V (ω). The Fourier spectrum
was then normalized with respect to the DC-component,
V (0), providing V̂ (ω); therefore, the smoothness values were
unitless (arbitrary units, a.u.) [23]. Then, the arc length of the
normalized Fourier spectrum was computed:

S P ARC = −
∫ wc

0

⎡
⎣(

1

wc

)2

+
(

dV̂ (ω)

dω

)2
⎤
⎦

1
2

dω (3)

V̂ (ω) = V (ω)

V (0
) (4)

wc = min[wmax
c , min[ω, V̂ (r) < V̄ ∨ r > ω]] (5)

Less smooth movements have more frequency components
resulting in a more complex envelope with a longer arc length.
ωc defined the upper limit of the frequency window that the arc
length was calculated over; it was defined by the threshold V̄
and was upper-bounded by ωmax

c . This limit served to remove
high-frequency noise from the signal. The current calculation
adopted the recommended parameters given in [23]: V̄ =
0.05 and ωmax

c = 20π rad/s. A higher value of V̄ would
exclude critical features of the spectrum. Smoothness was
calculated over the trial segment in which the absolute cup
velocity was greater than 5% of the absolute peak velocity in
the given trial.

3) Risk: In self-feeding activities humans seek to avoid the
risk of spilling their drink or food. Hence, risk or safety
margins have been evaluated in previous studies as indicator
of successful completion of a task. During transport of the
cup-and-ball, neurotypical young adults decreased risk of
‘spilling’ the ball when unconstrained by time [30]. In older
individuals this risk of ‘spilling’ was greater, but it decreased
with practice [31]. In this study we expected persons with
stroke to show higher risk than able-bodied individuals.

To quantify how subjects reduced the chance of losing the
ball, an energy margin was defined [10]. This metric used
the energy of the ball to calculate the risk or likelihood of
the ball to escape the cup. For the ball to remain in the
cup, the total energy of the ball ET otal, the sum of potential
energy E Potent ial and kinetic energy EK inet ic , cannot exceed a
threshold. This threshold, referred to as escape energy EE SC ,
and was determined by the cup’s rim angle, cup radius, ball
mass and gravity. If ET otal became greater than EE SC , the ball
would escape from the cup, unless the energy was quickly
dissipated. The safety or energy margin was the difference
between EE SC and ET otal at any given time point:

EK inet ic(t) = θ̇ (t)2l2mb

2
(6)

E Potent ial(t) = mbgl(1 − cos θ) (7)

ET otal(t) = EK inet ic(t) + E Potent ial(t) (8)

EE SC = mbgl(1 − cos θE SC) (9)

EM ARG I N (t) = EE SC − ET otal(t) (10)

These calculations provided a time series of EM ARG I N over
the course of the trial. The time points ti of the local ball angle
maxima, i.e., the moments when the ball angle magnitude was
higher than at the adjacent time points, were determined. The
mean of the EM ARG I N (t) at these moments was calculated and
transformed into a risk metric by the following conversion:

Risk = 1 − 1

n

1

EE SC

n∑
i=1

EM ARG I N (ti ) (11)

4) Mutual Information: As reviewed above, previous research
demonstrated that predictability of object interactions was
paramount and able-bodied subjects increased predictability
with practice. We expected that individuals with stroke achieve
lower predictability than able-bodied individuals. To quantify
predictability of the object, mutual information (MI) was
computed. This measure quantified how much the information
about one variable predicted another variable; high MI con-
veys high predictability [32]. MI can assess both linear and
nonlinear dependencies, making it a more robust measure than
cross-correlation [32]. Specifically, MI computed the degree to
which the cup kinematics could predict the temporal evolution
of the ball dynamics. Since the cup and ball trajectories were
close to sinusoidal, the kinematics were best represented by
phase in state space. MI between cup phase φcup and ball
phase φball quantified the degree of predictability between
the cup that the subject moved and the ball that was moved
indirectly.

φcup(t) = tan−1
[

Ẋ
2π f X

]
, φball(t) = tan−1

[
θ̇

2π f θ

]
(12)

MI was then defined as:
M I (φball , φcup)

=
∫∫

P(φball , φcup)ln
[

P(φball ,φcup)
P(φball )P(φcup)

]
dφballdφcup. (13)

P denotes the probability density functions for φball and
φcup computed using the distribution of the experimental data
with histogram estimators [33]. MI is a dimensionless quantity
represented on a natural log scale (nat) and was calculated over
the trial segment where absolute cup velocity was greater than
5% of the peak velocity for a given trial.

E. Statistical Analyses

Data were collected from the contralesional and ipsilesional
upper extremity of six participants after stroke, and from both
upper extremities of six able-bodied participants. For the sake
of focus, the non-dominant upper extremity of able-bodied
individuals was not included in the analysis. Hence, the data
comprised six able-bodied subjects with 60 trials each, and
six persons with stroke with, in principle, 120 trials each.
However, two of the PS were collected at the hospital and due
to time constraints PS1 and PS5 could only complete 25 and
43 trials, respectively.

Each of the four metrics was evaluated using a mixed-
effects model, specifically a linear random-intercept model,
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Fig. 5. Exemplary kinematics of three participants, two participants
after stroke (PS2 and PS4) and one able-bodied participant (AP3).
A. Overhead view of displacements of the cup in the three participants.
B. Overhead view of displacements of the ball in the three participants.
In all panels the color gradients display the time elapsed as participants
completed the task. The gray circles indicate the location and size of the
start and target circles. The start and target circles are in the southwest
and northeast corner from the participant’s perspective. PS2: Participant
with apparent upper extremity weakness after stroke. PS4: Participant
with no apparent upper extremity weakness after stroke. AP3: Able-
bodied participant. C. Time series of the cup position. D. Time series
of the cup velocity. E. Time series of the ball angle. F. Time series of the
ball velocity. All time series were from the Deep Cup With Ball condition
and measured along the axis of movement.

with group (Contra, Ipsi and Able-Bodied) and level of
difficulty as fixed effects and subject-specific intercepts as
random effects. All trials of each subject were entered into the
model. This analysis addressed whether persons after stroke
exhibited differences in performance compared to able-bodied
individuals in their contralesional and their ipsilesional side
(question 1 and 2). The same model also examined whether
the contralesional side differed from the ipsilesional side in
persons with stroke (question 3). We also tested whether
performance in all participants was affected by the different
levels of difficulty (question 4).

With the level of power set to 0.80 and significance set
to 0.05, the statistical tests were sufficiently powered to
detect an effect size d of 0.36 or higher. The effect sizes
were reported for differences that were statistically significant.
To further probe whether our new metrics could reveal reliable
differences in performance in PS with distinct impairment
scores (question 5), we also computed intra-class correlation
coefficients (ICCs). Using the mixed-effects model, ICCs
quantified the sources of variance across participants after
stroke. Low ICC values imply that most of the variance
in the data was due to within-subject variance; high ICC
values indicate a higher proportion of between-subject vari-
ance (showing greater between-subject differences and within-

subject homogeneity), signifying that a metric is relatively
consistent for a given participant. Two different types of ICC
were computed: conditional ICC (from a model containing the
two covariates group and difficulty) and unconditional ICC
(from a model not containing any covariates). All statistical
analyses were conducted using STATA 17.

III. RESULTS

Fig.5A, B presents the overhead kinematics of the cup and
the ball collected from two participants after stroke (PS2 and
PS4) and one able-bodied participant (AP3). Fig.5C, D, E,
F show the time series of cup and ball displacements and
velocities in the direction of movement (defined between the
centers of the start and target circles). Note the different scales
on the time axes. The kinematics of each subject differed in the
ball’s displacement and velocity, sensitively revealing different
strategies for each performer.

1) Movement Time: Fig.6A summarizes movement time
averaged across subjects for each upper extremity (Contra,
Ipsi, Able-Bodied) and for each level of difficulty (different
cups with and without the ball). As expected, movement
time of the PS contralesional arm was significantly slower
than movement times of the AP dominant upper extremity
(p = 0.006, d = 0.61). While movement time of PS’s
ipsilesional arm did not differ from the dominant upper
extremity of AP (p = 0.13), it was significantly faster than
the contralesional side (p < 0.001, d = 0.26). Comparison
across the different levels of difficulty showed that, when
controlling for hand group, the average movement times in
the easiest condition, Deep Cup No Ball, were significantly
shorter than movement times in the two harder conditions,
Deep Cup With Ball ( p < 0.001, d = 0.17) and Shallow
Cup With Ball ( p < 0.001, d = 0.21). However, the two
latter conditions were not different (p = 0.08). This confirmed
that adding internal dynamics to the object indeed slowed
the speed of the transport as expected. Fig.6B, C, D show
the means and standard deviations of movement time for
each subject split by the hand group and the three levels of
difficulty. Each color represents a different subject. To evaluate
whether movement time was consistent for a given PS, intra-
class coefficients ICC were calculated. The unconditional and
conditional ICC measures among the PS were at 0.57 and
0.61, respectively, indicating relatively high between-subject
differences with more homogeneity within subjects.

2) Smoothness: Fig.6E overviews the averages and standard
deviations of smoothness for each of the three hand groups
and difficulty levels. Note that less negative SPARC values
indicate smoother trajectories. As expected, when controlling
for difficulty, cup kinematics with the contralesional were
significantly less smooth than those with the able-bodied arm
(p = 0.005, d = 0.62); similarly, the ipsilesional arm was less
smooth than the upper extremity of AP (p = 0.004, d = 0.59).
However, smoothness values did not differentiate between PS’s
contra- and ipsilesional upper extremity (p = 0.55), suggest-
ing less sensitivity than movement time. Controlling for group,
performance with the Deep Cup No Ball was less smooth than
performance with the Deep Cup With Ball (p < 0.001, d =
0.19) and the Shallow Cup With Ball (p < 0.001, d = 0.22).



432 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 6. (Top Row) Performance measured by movement time. A. Movement times averaged across subject means for the contralesional (Contra)
side of participants after stroke, ipsilesional (Ipsi) side of participants after stroke, and dominant side of able-bodied participants (Able-Bodied). Each
bar represents the average and standard deviation of the group data. The bars represent Deep Cup No Ball, Deep Cup With Ball and Shallow Cup
With Ball conditions. B-D Each bar displays the mean movement time for each participant, showing their average and standard deviation across
all trials. B. Deep Cup No Ball condition. C. Deep Cup With Ball condition. D. Shallow Cup With Ball condition. (Bottom Row) Smoothness values
measured with by the SPARC metric. Less negative or smaller values indicate that trajectories were smoother. E. Smoothness values averaged
across subjects for upper extremity group (Contra, Ipsi, Able-Bodied). Performance is separated for each level of difficulty. F-H. Average and standard
deviation of smoothness of each participant. F. Deep Cup No Ball condition. G. Deep Cup With Ball condition. H. Shallow Cup With Ball condition.

This appeared counterintuitive, but reflected the additional
demands when a moving ball was involved. The smoothness
metric could not differentiate between the two conditions with
the ball ( p = 0.21). Fig.6F, G, H show average smoothness
values of each subject for each hand group and level of
difficulty. The unconditional and conditional ICC values in PS
were estimated at 0.65 and 0.67, respectively, demonstrating
that smoothness values attained by each participant were
relatively consistent, i.e., there was higher correlation within
subjects than between subjects.

3) Risk: Fig.7A shows the averages and standard deviations
of risk values across the three upper extremity levels, split by
difficulty. Note that risk could only be calculated when the cup
had a ball inside. Contrary to expectations, risk values of the
PS group did not differ from those of the AP, neither in the
ipsilesional extremity (p = 0.44), nor in the contralesional
extremity (p = 0.08). Yet, risk in the ipsilesional upper
extremity was significantly higher than in the contralesional
upper extremity group (p = 0.001, d = 0.13). When averaging
over group, risk in Deep Cup With Ball was significantly
lower than in the Shallow Cup With Ball ( p < 0.001, d =
0.47), as with a shallower cup it was easier to lose the ball.
Fig.7B, C show risk values for each subject and difficulty level.
Unconditional and conditional ICC values in persons with
stroke were 0.31 and 0.38, respectively, indicating that there
was more within-subject variability, i.e., the metric was not as
discerning of different impairment levels as other metrics.

4) Mutual Information: Average and standard deviation of
mutual information values MI across subjects for each group

and level of difficulty are summarized in Fig.7D. This metric
could only be calculated when a ball was in the cup. High
MI indicates that the ball kinematics were more predictable
for the given cup kinematics. As expected, participants with
stroke had lower MI values than able-bodied participants. MI
of the contralesional upper extremity in PS was significantly
lower than that in able-bodied individuals (p < 0.001,
d = 0.75). In addition, the ipsilesional extremity of persons
with stroke also had lower MI than the able-bodied individuals
(p = 0.004, d = 0.51). Further, MI detected a significantly
higher value in the ipsilesional arm compared to the contrale-
sional arm ( p < 0.001, d = 0.20). With these differences, MI
not only distinguished between performance in AP versus PS,
but also differentiated between the “affected” and “unaffected”
side in PS. When comparing the two levels of difficulty, MI
was significantly higher in the more difficult Shallow Cup
With Ball condition (p = 0.01, d = 0.06). Overall, mutual
information was the only metric that differentiated between all
levels of group and difficulty. Fig.7E, F presents the subject
averages of each participant split by hand group and difficulty.
Unconditional and conditional ICC values in persons with
stroke were estimated at 0.67 and 0.69, respectively. These
were the highest ICC values across all metrics, demonstrating
that MI was consistent within a subject while displaying larger
differences between subjects.

IV. DISCUSSION

This study presented a novel testing device that was
developed on the basis of a theoretically grounded para-
digm for assessing hand-object interactions, and evaluated its
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Fig. 7. (Top Row) Performance measured by the risk metric. A. Average and standard deviation of risk across subjects in each group, Contra, Ipsi
and Able-Bodied. The two bars for each group represent performance in Deep Cup With Ball and Shallow Cup With Ball conditions. B-C. Each bar
shows the mean and standard deviation of risk for all trials of each participant in each group (Contra, Ipsi and Able-Bodied). Risk values for B. Deep
Cup With Ball condition. C. Shallow Cup With Ball condition. (Bottom Row) Performance measured by mutual information between cup and ball
kinematics as a metric for predictability. D. Average and standard deviations of mutual information for all participants of a hand group across Deep
Cup With Ball and Shallow Cup With Ball conditions. E-F. Each bar shows the mean and standard deviation of mutual information from all trials of
each participant. Data are separated by Contra, Ipsi and Able-Bodied. E. Deep Cup With Ball condition. F. Shallow Cup With Ball condition.

translation into a clinical context. Specifically, goal-oriented
interaction with a complex object, core to numerous daily
activities from stirring soup to drinking a cup of coffee,
motivated an experimental platform for the assessment of
upper extremity functional skill after stroke. Prior fundamental
research developed the model-based task, tested it in a virtual
implementation and validated novel metrics that quantified
features of successful performance. This paradigm was con-
verted into a real-world 3-dimensional task and a portable
device was custom-designed for easy use in clinical settings.
The MAGIC Table is an affordable and inclusive platform
that provides precise kinematic data for model-based data
analyses of functional interactions. Its practical and low-cost
features may also allow use in rehabilitative assessment in the
future.

To demonstrate its feasibility, this study compared task
performance of six participants after stroke and six able-bodied
participants using both conventional and novel kinematic met-
rics. Using the conventional metrics of movement time and
smoothness, results showed that participants after stroke took
longer to complete the task and exhibited reduced smoothness
in comparison to able-bodied participants with their dominant
upper extremity. However, the comparisons of performance
between the ipsi- and contralesional arm yielded inconsistent
results. The novel risk metric showed that participants after
stroke exhibited riskier interactions with their ipsilesional
upper extremity, but did not distinguish from able-bodied
performance. Lastly, mutual information, which quantified pre-
dictability between the cup and ball dynamics, showed reliable
differences between the ipsilesional and contralesional upper
extremity; both differed from the dominant upper extremity

of able-bodied participants. It also differentiated between
performance in the two difficulty levels.

With exception of risk, all metrics identified more homo-
geneity within individual subjects and differentiated between
severity levels. However, mutual information showed the most
consistent differences between PS subjects, demonstrating
its potential use for quantifying severity. These first results
validated the MAGIC Table as a testing device and that
quantification of essential differences between individuals is
possible, especially with the novel metric of predictability.
This study sets the stage for extensive testing of a larger
cohort of persons with stroke. Future work will further evaluate
the robustness of quantification of impairment severity and
recovery in the context of functional skill.

A. Assessing Persons With Stroke in a Functional Task

To date, clinical scales have evaluated impairment in iso-
lated postures and in movements that do not reflect functional
actions in real life that are central to independent living, such
as eating with a spoon, or pouring water from a bottle. The
challenges that these interactive skills pose to coordination go
far beyond those of simple reaching movements that have been
widely studied in fundamental movement neuroscience [22],
[34]. When carrying a cup with sloshing liquid inside, the
person has to employ sophisticated control strategies as the
fluid acts on the cup and can perturb the hand. The cup-and-
ball paradigm was developed by Sternad and colleagues to
shed light on such interactive tasks. A series of experimental
and theoretical studies revealed that humans make interactions
more predictable by choosing appropriate initial conditions,
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seeking stable regions in state space, and exploiting resonance
frequencies [9], [10], [11], [15]. The MAGIC Table represents
a real-world version of the same task that allows for affordable
testing outside the laboratory. Following earlier pilot tests in
children with dystonia [19], this study examined functional
skill in persons with stroke. Results demonstrated that persons
with moderate impairments can perform the experimental task
showing that the MAGIC Table can leverage fundamental
insights to gain deeper understanding of upper extremity
deficits after stroke [44].

B. Sensitivity and Versatility of the MAGIC Table for
Evaluation and Rehabilitation

Traditional assessments of functional skill after stroke, such
as the Wolf Motor Assessment Test, do not record kinemat-
ics, leaving evaluation to rater scores [6], [7]. These scales
have limited resolution and often result in scores that suffer
from ceiling or floor effects. The high-resolution kinematic
recordings of the MAGIC Table not only allow quantitative
assessment of performance, but also afford adjustments of task
difficulty to include individuals with a range of motor ability.
In addition to customizing cup parameters, task difficulty can
also be manipulated by changing ball size and weight. The
movement can consist of different paths as the white board
allows drawing other targets. The light-weight construction of
the MAGIC Table also affords use at the bedside during acute
stroke hospitalization. Thus, the MAGIC Table can be used in
different clinical settings, ranging from acute care hospitals to
rehabilitation facilities to outpatient clinics.

In traditional rehabilitation, therapeutic exercises consist of
upper extremity tasks, strength training and motor games.
Improvements have largely remained task-specific with limited
potential to translate to activities of daily living (ADLs) [1].
Patients also struggle to gain access to clinician-administered
therapy due to insurance restrictions, geographical distance,
or transportation costs. Yet, therapy is most impactful when
there are a high number of repetitions coupled with sufficient
motivation [35], [36]. The design features of the MAGIC
Table directly address these desiderata: The portable low-cost
testbed can be used at home, limiting cost and travel. The task
set-up and execution with data collection require very little
training and can be conducted by a clinician, caretaker, or by
the user. Data could also be recorded and monitored remotely
by a physical therapist. The MAGIC Table’s versatility may
encourage a sufficient amount of practice without loss of
motivation, which is essential for adherence to therapy.

C. Sensitive Evaluation of Skill in a Functional Task

Movement after stroke is often slow with increased inter-
mittency and its overall duration has been shown to correlate
with functional scores [21], [37]. However, this experiment,
with a more demanding task goal, showed that movement time
also depended on task difficulty. Movement times significantly
increased from the easiest task (with an empty cup without any
additional dynamics) to the two more difficult variations where
the ball acted on the cup. This indicates that more challenging

tasks may better reveal motor deficits, even in straightforward
kinematic metrics such as movement time.

It has been amply demonstrated that goal-directed upper
limb movements in persons with stroke exhibit temporal
latencies and spatial intermittencies that result in decreased
smoothness, typically quantified by mean jerk [21], [23], [37],
[38], [39]. However, these previous results were obtained in
free reaches or in translation of rigid objects, which only
increase the mass of the arm, but do not involve additional
dynamics. In the present experiment, kinematics were more
smooth once the ball was added to the cup, indicating that
as objects with internal dynamics posed more difficulty, they
required different control strategies. While smoothness dif-
ferentiated between participants after stroke and able-bodied
participants, it could not distinguish between the two upper
extremities after stroke. One possible reason is that estimates
of smoothness cannot differentiate between the participants’
inherent intermittency and the additional task dynamics.

Previous research on the virtual cup-and-ball task showed
that healthy older participants initially moved with higher risk
of spilling the ball but learned to decrease risk values, when
unconstrained by time [30]. In this study subjects were asked
to move the cup-and-ball as fast as possible. Unexpectedly,
risk in the contralesional upper extremity was significantly
lower than in the ipsilesional upper extremity, although the
trend was largely driven by two participants (PS4 and PS5).
Nevertheless, this result may be due to compensatory strategies
that individuals may have developed with their ipsilesional
upper extremity. Participants with apparent arm weakness
appear to engage in less risky strategies. This is likely due
to their slower movements, where less force is applied to the
ball, reducing likelihood of escape. Hence, low risk values
coupled with slow movements may reflect that persons with
stroke were unable to retain control of the ball at faster cup
speeds.

Previous work by Sternad and colleagues demonstrated
that humans seek to increase predictability when interacting
with objects that have potentially unpredictable dynamics [9],
[10], [18]. Predictability of object dynamics was quantified
by an information-theoretic metric, mutual information, con-
ceptually similar to correlation, where higher MI expresses
a greater degree of predictability. Not only was the degree
of predictability attained in able-bodied participants higher
than participants after stroke, but also interaction with the
ipsilesional side was more predictable than that of the con-
tralesional side. Further, the ICC scores demonstrated a high
within-person consistency of this metric. Whether this metric
aligns with clinical scores or may be even more discerning
in diagnosing deficits remains to be verified in future work.
Quantifying predictability in functional interactions may yield
subtle insights that are otherwise missed by conventional
scales.

D. Limitations

The MAGIC Table was designed to be inclusive to individ-
uals with a range of motor abilities. Yet, those with moderate
and severe upper extremity deficits may be unable to grasp the
cup handle, requiring their hand to be secured with a loose
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bandage to the cup. Further issues may arise when patients
are unable to extend their arm without compensation by the
torso. Support of the upper arm against gravity may help
to extend their reach or improve quality of the trajectories,
but it has also been shown to result in less improvements in
reach radius across practice [40], [41], [42]. This is consistent
with results in healthy individuals, where arm weight support
was also shown to hinder learning of an object manipulation
task [43]. To make the testbed more inclusive, we will evaluate
the effectiveness of arm support and a grip glove in future
experiments.

Future studies should also add systematic monitoring and
clinical assessments, such as Fugl-Meyer testing synchronous
with the experimental data collection. However, this may also
create discrepancies between improvements seen in scores and
MAGIC Table results that will need further scrutiny to decide
which results are more reliable. While the extension-flexion
movements of the cup-and-ball were designed to make the
task as inclusive to various skill levels, moving the cup along a
line reduced the dimensionality of the task. Future experiments
should examine tasks that include two-dimensional move-
ments, as they make the cup-ball interactions more complex
and demanding, possibly becoming even more sensitive test-
beds. This is feasible given that the cup-and-ball can be moved
across the whiteboard and the computer vision algorithm can
detect the ball and the cup at any point within the frame of
view.

V. CONCLUSION

This study demonstrated that the MAGIC Table can be
used as a portable low-cost device for quantitative assessment
of upper-extremity movements after stroke. Inspired by daily
motor challenges that can be manipulated for experimental
purposes, the paradigm is grounded in theoretical analysis
and presents a bridge between laboratory research and clinical
field data. The findings highlight the sensitivity of the novel
measures to become useful in patient evaluation. With its feasi-
bility and affordable design, the MAGIC Table has significant
potential to be an informative rehabilitation assessment device.
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