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First published March 11, 2020; doi:10.1152/jn.00536.2019.—While
the study of unconstrained movements has revealed important features
of neural control, generalizing those insights to more sophisticated
object manipulation is challenging. Humans excel at physical inter-
action with objects, even when those objects introduce complex
dynamics and kinematic constraints. This study examined humans
turning a horizontal planar crank (radius 10.29 cm) at their preferred
and three instructed speeds (with visual feedback), both in clockwise
and counterclockwise directions. To explore the role of neurome-
chanical dynamics, the instructed speeds covered a wide range: fast
(near the limits of performance), medium (near preferred speed), and
very slow (rendering dynamic effects negligible). Because kinemati-
cally constrained movements involve significant physical interaction,
disentangling neural control from the influences of biomechanics
presents a challenge. To address it, we modeled the interactive
dynamics to “subtract off” peripheral biomechanics from observed
force and kinematic data, thereby estimating aspects of underlying
neural action that may be expressed in terms of motion. We demon-
strate the value of this method: remarkably, an approximately ellip-
tical path emerged, and speed minima coincided with curvature
maxima, similar to what is seen in unconstrained movements, even
though the hand moved at nearly constant speed along a constant-
curvature path. These findings suggest that the neural controller takes
advantage of peripheral biomechanics to simplify physical interaction.
As a result, patterns seen in unconstrained movements persist even
when physical interaction prevents their expression in hand kinemat-
ics. The reemergence of a speed-curvature relation indicates that it is
due, at least in part, to neural processes that emphasize smoothness
and predictability.

NEW & NOTEWORTHY Physically interacting with kinematic
constraints is commonplace in everyday actions. We report a study of
humans turning a crank, a circular constraint that imposes constant
hand path curvature and hence should suppress variations of hand
speed due to the power-law speed-curvature relation widely reported
for unconstrained motions. Remarkably, we found that, when periph-
eral biomechanical factors are removed, a speed-curvature relation
reemerges, indicating that it is, at least in part, of neural origin.

constrained motion; mechanical impedance; predictability; rhythmic
movements; two-thirds power law

INTRODUCTION

Experimental studies of motor neuroscience should start
with macroscopic behavior, as there are some remarkably
robust patterns that can guide the investigation of neural
control of movement (Krakauer et al. 2017). One such pattern
robustly observed in curved motions is a relation between hand
path curvature and speed: hand speed decreases as curvature
increases. This finding has been widely reported in uncon-
strained movements for more than 30 years, although its
implications for neural control have been controversial (Abend
et al. 1982; Catavitello et al. 2016; Dayan et al. 2007; Gribble
and Ostry 1996; Hicheur et al. 2005; Huh and Sejnowski 2015;
Lacquaniti et al. 1983; Massey et al. 1992; Schaal and Sternad
2001; Schwartz 1994; Viviani and Flash 1995; Viviani and
Stucchi 1989; Viviani and Terzuolo 1982; Zago et al. 2018).
Specifically, the discussion debated whether this robust rela-
tion is due to biomechanical or neural influences. To further
examine how biomechanical factors may influence or give rise
to this robust speed-curvature relation, the present study ex-
amined a simple constrained-motion task to test whether this
pattern persists even when mechanical conditions prevent its
expression. It did, suggesting that the speed-curvature relation
is present in the neural organization of action.

While human dexterity vastly exceeds that of modern robots,
the human neuromechanical system is orders of magnitude
slower than its robotic counterparts (Kandel et al. 2013; Loram
et al. 2005; Shepard and Metzler 1971). Slow neural transmis-
sion and muscle response implies that humans have to rely
heavily on feed-forward (i.e., predictive) control, especially
when physically interacting with objects and environments
where bidirectional interaction forces arise. Prior work on the
control of dynamically complex objects showed that humans
adjust their behavior to prioritize predictability of the object
dynamics (Bazzi et al. 2018; Maurice et al. 2018a; Nasserole-
slami et al. 2014; Sternad 2017; Sternad and Hasson 2016).
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Here we extend the study of predictability to kinematically
constrained actions.

One way to move predictably is to move smoothly, as rapid
rates of change, i.e., nonsmooth jerky movements, compromise
the ability to predict future states. Smoothness, quantified by
minimal mean-squared jerk, has been demonstrated in numer-
ous studies of unconstrained reaching (Flash and Hogan 1985;
Hogan 1982, 1984; Nelson 1983; Sternad et al. 2010). Inter-
estingly, smoothness can also account for the relation between
hand path curvature and tangential speed. For simple curves
(e.g., ellipses), this is the so-called “two-thirds power law,” as
hand speed decreases at regions with higher curvature in a
robust power law (Lacquaniti et al. 1983; Richardson and Flash
2002; Schaal and Sternad 2001; Sternad and Schaal 1999;
Viviani and Flash 1995). More complex curves display more
complex relations, a “spectrum of power laws” (Huh and
Sejnowski 2015). Importantly, in all cases, a temporal coinci-
dence between extrema of tangential speed and path curvature
is derived from theory and observed in practice. A power-law
speed-curvature relation is consistent with a preference for
smoothness and predictability.

Much of the previous neuroscience literature has focused
on simple unconstrained movements, typically reaching and
pointing. While these paradigms have rendered manageable
data for analysis and modeling, it is difficult to generalize the
insights gained to understand tasks that involve physical inter-
action, essential in any kind of tool use. While some animals
are capable of making and using tools, this ability is vastly
more developed in humans (Boesch and Boesch 1990; Hunt
1996; Johnson-Frey 2004; Kenward et al. 2005). Physical
interaction is a significant challenge in robotics (Colgate and
Hogan 1989, 1988; Paul 1987; Whitney 1977). It is, therefore,
quite remarkable that, despite the feedback delays in the motor
system, humans maintain stability in everyday tasks. Many
tools and daily interactions with the environment introduce
kinematic constraints, such as turning a steering wheel, open-
ing a door, and turning a crank. For example, opening a door
or turning a steering wheel confines the hand to a planar
circular path with constant curvature; if the speed-curvature
relation generalizes to object manipulation, no speed fluctua-
tions should be evoked. However, if that relation is of primarily
neural origin, it may still influence behavior, even in this
situation. This study tested whether a speed-curvature rela-
tion—a corollary of predictability—was present in the neural
command, even in those cases.

A central challenge in motor neuroscience is to tease apart
the contributions of neural control and biomechanics, a
problem that is even more pronounced during interactive
tasks. During physical interaction, a limb is fundamentally
subject to at least two sets of inputs for every output: force
exerted on an object depends not only on neural activity, but
also on the object’s motion. The relation between displace-
ment and the force it evokes may be characterized mathe-
matically by mechanical impedance (a dynamic generaliza-
tion of stiffness). In principle, knowledge of mechanical
impedance combined with simultaneous measurement of
force and motion during object manipulation would allow us
to “subtract off” or “peel back” peripheral biomechanics to
uncover underlying neural influences. In practice, mechanical
impedance is nonlinear and time-varying, and measuring it during
movement, although possible, is challenging (Bennett et al. 1992;

Guarín and Kearney 2017; Lacquaniti et al. 1993; Lee et al. 2016;
Lee and Hogan 2015; Rouse et al. 2013, 2014; van de Ruit et al.
2020). Moreover, measurement inevitably introduces perturba-
tions that may alter behavior.

An alternative (pursued here) is to approximate mechan-
ical impedance using a plausible mathematical model based
on measurements made under static postural conditions.
Given this model and observations of actual motion and
exerted force, we define a construct that we call the “zero-
force trajectory,” the trajectory that would have been fol-
lowed if the external forces were zero. The zero-force
trajectory summarizes one consequence of neural activity
and expresses it as a quantity that may be compared with
actual motion. To evaluate its sensitivity to the uncertainty
about mechanical impedance, the results were tested over a
wide range of parameter variations.

Motion under a circular constraint, i.e., turning a crank,
imposes a constant curvature hand path. If a speed-curvature
relation applies to hand motion during object manipulation,
turning a crank should not elicit any variation of hand speed.
However, the zero-force trajectory is not confined to the
constant curvature of the circle. If a speed-curvature relation,
consistent with smoothness and predictability, is a feature of
neural control, it should be manifest in the consequence of
neural action that is expressed by the zero-force trajectory. The
central hypothesis tested in this study was that a systematic
relation between curvature and speed would reemerge in ob-
servations of the zero-force trajectory.

To create a rich data set to afford subtracting off the
influences of inertial mechanics and neuromuscular dynamics,
crank-turning was studied at preferred speed, and three speeds
covering a wide range: 1) a speed close to the fastest that
subjects could manage, such that inertial effects predominate;
2) a speed near subjects’ preferred or comfortable speed; and 3)
an extremely slow speed, such that the action was quasi-static
and all dynamic effects were negligible. To encourage move-
ments with constant speed along the constant curvature path,
we provided a visual display of instructed speed, together with
visual feedback of actual hand speed. As inertial behavior is
strongly directional and varies with limb position, we exam-
ined clockwise and counterclockwise rotation.

Remarkably, we found that, when peripheral biomechan-
ics were subtracted, independent of the direction of rotation,
the zero-force trajectory exhibited a coincidence of curva-
ture and speed extrema resembling that reported for uncon-
strained motion.

METHODS

Participants

Ten healthy male college-aged students were recruited for the study.
All participants were right-handed, and none reported any biomechanical
injury to their arm nor any neurological problems. All participants gave
informed, written consent before the experiment. The informed consent
and experimental protocol were reviewed and approved by the Institu-
tional Review Board for the Massachusetts Institute of Technology.

Experimental Apparatus and Procedure

The crank used in this experiment is shown in Fig. 1. The crank
arm was mounted on a high-precision incremental optical encoder/
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interpolator set (Gurley Precision Instruments encoder no. 8335-
11250-CBQA, interpolator no. HR2-80QA-BRD) with a resolution of
0.0004 degrees per count. A six-axis force transducer (ATI model
15/50) was attached to the end of the crank, with a handle mounted on
it. A spool managed the force transducer cable.

During the experiment, the subject’s arm was occluded from view
by a wooden structure, which did not limit the range of motion. The
arm was suspended by a canvas sling connected to the ceiling; the arm
and forearm were in the plane of the crank. The subject sat in a chair
with a rigid back, while the shoulder was constrained by a harness
attached to the back of the chair. The subject was positioned such that
the crank, with radius of 10.29 cm, was well within the work space of
the arm.

Data acquisition was controlled by a computer running the QNX
real-time operating system on an Intel Pentium 100 processor. The
encoder, sampling at 200 Hz, was connected to a set of counters and
to the computer via digital I/O. The ATI force transducer’s signal,

sampled at 100 Hz, was processed by its embedded controller and
input to the computer through the digital I/O. The visual display, also
generated by the computer, was on a 17-in. monitor (311 � 238 mm,
resolution 1,280 � 1,024, 76 Hz), which was mounted ~75 cm from
the subjects’ eyes. The experiment was divided into two unequal
sections: two blocks of trials at subjects’ preferred or comfortable
speed, and six blocks of trials at a visually instructed speed. The
design of the experimental conditions is graphically overviewed in
Fig. 2.

At the start of the experiment, subjects performed 20 trials at their
preferred speed, 10 trials in clockwise (CW) direction and 10 in
counterclockwise (CCW) direction. Both conditions were blocked, in
random sequence for each subject, and each trial lasted 8 s. Subjects
were not provided any visual feedback during these trials. Thereafter,
subjects performed 6 blocks of 30 trials, each with visual specification
of 1 of 3 target speeds [slow: 0.075, medium: 0.5, and fast: 2.0
revolutions per second (rev/s)], in either CW or CCW directions (Fig.
2). The order of the speed and direction blocks was pseudorandomized
across subjects. The three speeds were selected to cover a significant
range: 0.075 rev/s was extremely slow (required over 13 s per
revolution), 0.5 rev/s was close to subjects’ preferred speed, and 2.0
rev/s was close to the fastest speed at which subjects could turn the
crank. Visual feedback on the monitor displayed the target speed,
as well as subjects’ real-time hand speed: the horizontal axis was
time, and the vertical axis was speed. Subjects’ speed was esti-
mated using an online backward finite difference algorithm. Target
speed was displayed as a continuous horizontal line in the middle
of the screen. The relation between crank motion and screen
display was rescaled for every block; the width of the screen
corresponded to the time of the trial, which was a function of the
desired crank speed. Seven trials in each block were “blind” catch
trials, in which visual feedback of the actual hand speed was
removed, while the display of target speed was retained. For each
speed direction block, one distribution of catch trials was chosen
and kept the same for all subjects. The placing of catch trials was
different for each block. The pseudorandomizing of catch trials
ensured that there was at least one trial with visual feedback before
each catch trial.

In the slow-speed conditions, each trial lasted 45 s; in the medium-
speed conditions, each trial lasted 16 s; and in the fast-speed condi-
tions, each trial lasted 4 s. This yielded 8 turns of the crank for the fast
and medium conditions, but only ~3.4 turns of the crank for the slow
condition. The duration of the slow-speed trials was chosen as a
compromise between acquiring adequate data and avoiding subject
fatigue.

Fig. 1. Experimental setup. The crank displayed in the inset was used to
provide a circular constraint. Vision of the arm and crank was occluded, but
the subject was provided with visual speed feedback. The wrist was braced,
the elbow was supported by a sling, and the shoulders were strapped to a
chair.

 Slow
CW

 Preferred
CW

 Preferred
CCW

Fast
CCW

Medium
CCW

Slow
CCW

Fast
CW

Medium
CW

Visually-instructed speed trials

 30 trials, 7 w/out 
feedback (gray)
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Fig. 2. Experimental design. Each of the 10 subjects completed 20 trials at their preferred speed without visual feedback: 10 trials in clockwise (CW) and 10
trials in counterclockwise (CCW) directions. In the instructed-speed trials, subjects completed 30 trials in each condition. Visual feedback was not provided for
7 of the 30 trials during each of the instructed-speed blocks.
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Data Processing and Analysis

Crank speed and normal force were computed with respect to crank
angle divided into 360 angle bins. As the different target speeds were
sampled at the same rate for different trial durations, they contained a
different number of samples per bin. Therefore, the data were inter-
polated to the largest number of samples, which was 9,001 samples at
the slowest target speed, 0.075 rev/s. The interpolation was performed
using a piece-wise cubic Hermite interpolating polynomial (Fritsch
and Carlson 1980). After interpolation, the speed or force profiles
were binned into 360 sections corresponding to a full rotation of the
crank. Then the mean of the samples in each bin was taken, resulting
in a speed or force profile over 360 crank angles. In all trials, the first
1.5 s were discarded to eliminate transients before calculating sum-
mary measures. Dependent measures were mean speed, standard
deviation (SD) of speed, mean normal force, and SD of normal force.

Trials at preferred speed. To characterize subjects’ preferred be-
havior, we tested whether the mean normal force was significantly
different from zero, and whether turning direction influenced the
dependent measures. The speed mean and standard deviation (SD)
were computed for the initial 10 trials performed at the preferred
speed. Then these quantities were averaged to produce a mean speed
and SD for each subject. Mean force and SD of force were similarly
averaged for each subject. One subject moved much faster than all
others (beyond 2 SDs of the other subjects). His data were excluded
from subsequent analysis of the preferred speed trials.

Student’s t tests were used to detect whether the mean normal force
was significantly different from zero. Paired-sample t tests were
carried out to test for significant effects of turning direction on mean
speed and normal force. Significance values of post hoc t tests were
adjusted using the Šídák–Bonferroni procedure, where the original
significance level was defined as � � 0.05, the number of t tests was
m, and the corrected Šídák–Bonferroni significance values were:
�SID � 1 � (1 � �)1/m. All statistical analyses were performed using
the SPSS statistical software package (SPSS Inc., Chicago, IL).
Before these analyses, a Shapiro–Wilk test was performed on each of
the dependent measures to determine whether these data were drawn
from a normal distribution. In most cases, the assumption was met at
a 5% significance level. However, in four cases, the Shapiro–Wilk test
detected a violation. In three of the four cases, a single outlier was the
cause; the remaining case had two outliers. In each case, when the
outlier was removed, the Shapiro–Wilk test no longer detected a
violation of the normality assumption. Furthermore, the inclusion or
exclusion of these outliers did not change the statistical significance of
the tests. Thus only parametric tests were used in this analysis.

Trials at instructed speeds. In the first trial of the blocks in which
speed and direction were instructed, subjects often did not achieve the
task goal: they occasionally turned in the wrong direction, did not
complete a full cycle, or turned at the wrong speed. Hence, the first
trial in each block was discarded. The seven “catch” trials, without
visual feedback, were omitted from initial statistical analysis. The
speed mean and SD were computed for each of the remaining trials.

To quantify the influence of speed and direction, a linear mixed
model was employed; it was then tested using analysis of variance
(ANOVA). The linear model, which represented the observed depen-
dent measure Yi,j,k was expressed as

Yi,j,k � �T � � j � �k � �l(��) j,k � (��) j,l � (��)k,l � (���) j,k,l

� Ei,(j,k,l) (1)

where the grand mean is �T, the fixed effect of speed is �j, where j is
an index from 1 to 3, the fixed effect of direction is �k, were k is an
index from 1 to 2, the random effect of subject is �l, where l is an
index from 1 to 10, and the stochastic sampling effect is Ei,j,k, where
i is an index from 1 to 22 (representing the number of trials excluding
the first and the 7 catch trials). As above, all statistical analyses were
performed using the SPSS statistical software package (SPSS Inc.,
Chicago, IL); the significance level was set to 5%.

Simulation of passive inertial mechanics. Physical interaction with
a kinematic constraint changes the nonlinear inertial mechanics with
which the neuromuscular system interacts. Despite the familiarity of
this constrained-motion task, a failure to compensate perfectly for
these changes might account for some of the observed patterns of
force and motion. To provide insight about these nonlinear and
nonintuitive effects, we simulated the fluctuations of speed and force
that would be predicted from the configuration-dependent variation of
inertial mechanics subject to this kinematic constraint; the simulations
excluded any contribution from muscle action. The arm was modeled
as a two-link planar serial linkage, with no gravitational or frictional
effects. Inertial parameters were estimated based on the cadaver
studies of Dempster (Miller and Nelson 1973; Plagenhoef 1971). The
shoulder joint was located at the thorax, which was assumed to be
stationary. This approach is the same as that used by Ohta et al.
(2004). The dynamics of the arm coupled to the crank are detailed in
APPENDIX A. The variation of motion due to closed-chain inertial
dynamics was simulated. In these model simulations, all joint torques,
generated by muscle and by friction, were set to zero. The system was
initialized at the 3 o’clock position, with initial angular velocities set
to the three target speeds: slow, medium, and fast. Numerical inte-
gration was performed using MATLAB’s ode45 algorithm (Shampine
and Reichelt 1997).

Zero-Force Trajectories

To describe the dynamics of interaction, a mechanical impedance
operator was used: Z{·} (Hogan 1985a, 1985b). The force time-
function F(t) was computed from the displacement time-function
�x(t), F(t) � Z {�x(t)}. Displacement was defined as �x(t) � x0(t) �
x(t), where x(t) was the actual hand position and x0(t) was a zero-force
trajectory. Although muscle force production is a complex function of
many factors, its dominant behavior could be well-described by a
function of muscle length and its rate of change (Hill 1938; Joyce et
al. 1969; Rack and Westbury 1969). Accordingly, a simplified model
of muscle mechanical impedance was used: a linear spring and
viscous damping element with common displacement (Hogan 1984).
To implement this model on a two-joint arm, joint stiffness was
assumed to be a 2 � 2 symmetric matrix, independent of configura-
tion. Joint damping, also a 2 � 2 symmetric matrix, was proportional
to joint stiffness. This was similar to the muscle model previously
used by Flash (1987), although the damping term was defined relative
to the zero-force trajectory.

The joint torque was defined by

� � K(q0 	 q) � B(q̇0 	 q̇) (2)

The stiffness in units of N·m/rad was defined as

K � G�K11 K12

K21 K22
� � G�29.5 14.3

14.3 39.3 � (3)

The viscous damping in units of N·m·s/rad was defined as

B � �B11 B12

B21 B22
� (4)

where K11 and B11 are the net shoulder joint stiffness and damping;
K12, B12, K21, and B21 are the two-joint parameters, and K22 and B22

describe the elbow parameters; G is a dimensionless scalar. The
values for joint stiffness and damping were similar to those of Flash
(1987), such that B � �K. The � term had units of time, consistent
with a first-order model of muscle impedance (Hill 1938). A gain of
G � 0.5 was used in the slow and medium cases, and a gain of G �
1.5 was used in the fast case. Damping was derived from stiffness by
multiplication by a constant factor, �, which was 0.05 s for the slow
and medium cases, and 0.1 s for the fast cases.

Substituting Eq. 2 into Eqs. A2, A3, and A4 (from APPENDIX A), the
equation could be manipulated to solve for q̇0:
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q̇0 � B	1�MJ	1��JM	1JT � r2I	1eeT�F

	 J̇q̇ 	 r
̇�
̇n � bcI
	1e�� � h 	 K�q0 	 q�	 � q̇ (5)

Integrating Eq. 5 allowed for the computation of the zero-force
trajectory corresponding to a prescribed position, velocity, accelera-
tion, and force.

The velocity and force signals were filtered with a second-order,
zero-phase-lag Butterworth filter using a cutoff frequency of 10 Hz,
except in the slow condition, as the tangential force in the slow
condition was small in magnitude. At slow speeds, a large number of
samples with a magnitude close to the resolution of the sensor was
observed. This resulted in artifactual step changes in the force mea-
surements. To eliminate this artifact, the tangential force in the slow
condition was filtered with a cutoff frequency of 0.5 Hz, far faster than
the turning frequency of the slow task (0.075 rev/s).

Speed-Curvature Relation

In unconstrained motions, the relation between curvature and speed
has been well documented in human arm trajectories. This study
investigated if this relation was evident in the zero-force trajectory. To
compute the speed and curvature of the zero-force trajectory, it was
transformed into Cartesian coordinates, x0 and y0. Using the methods
of Dohrmann et al. (1988), the derivatives of the Cartesian position of
the zero-force trajectory were computed. Smoothing parameters of
10�3, 10�7, and 10�11 were used for the slow, medium, and fast
trials, respectively. These derivatives were used to compute tangential
speed, V0, and curvature, �0

V0 � 
ẋ0
2 � ẏ0

2 (6)

�0 �
ẋ0ÿ0 	 ẏ0ẍ0

(ẋ0
2 � ẏ0

2)3⁄2 (7)

Positive curvature would be consistent with a positive z rotation,
according to the right-hand rule. However, for ease of computation,
the radially inward direction was defined as positive curvature.

Previous reaching studies have shown that, when curves more
complex than simple ellipses were investigated, the simple power-law
relation between speed and curvature was not observed. Instead, a
more complex pattern emerged that could be characterized by a
“spectrum of power laws” (Huh and Sejnowski 2015). However, the
temporal coincidence of extrema of speed and curvature was retained
in all cases. The original study by Abend et al. (1982) and, to the best
of our knowledge, all related studies since then have observed this
temporal coincidence. The present study examined the data for this
temporal coincidence. To this end, local minima in tangential speed
and local maxima in curvature were identified, and their temporal
relation was quantified. For each local minimum in tangential speed,
the nearest local maximum in curvature was found. The signed
distance between the two extrema was normalized by the target speed
and defined as the interval �. This metric was computed for each trial
in each condition, and the data were pooled across trials for each
subject. The 95% confidence interval of the mean for each subject in
each condition was computed.

Sensitivity to Impedance Assumptions

To the best of our knowledge, limb impedance measurements
during physical interaction with a constraint have not been reported.
Thus impedance parameters were based on unconstrained static arm
stiffness and single joint damping measurements. Consequently, the
impedance parameters, the gain term for the stiffness, G, and the
proportional damping term, �, were varied to understand if the results
were sensitive to the impedance values used to compute the zero-force
trajectory. When the gain and damping terms changed, the zero-force
trajectory was expected to change. However, the main question was

whether any speed-curvature relation was affected when the zero-
force trajectory changed shape. To this end, the 95% confidence
interval of the mean for � was computed when the G and � terms
were each varied over a 3:1 range.

RESULTS

Speed and Force at Preferred Speed

The preferred speed trials were collected to establish a
baseline and quantify human performance without visual feed-
back. A representative subject’s turning speed and normal
force are plotted with respect to crank angle in Fig. 3. His
speed fluctuated about 0.5 rev/s, and systematic variations with
angular position were evident (Fig. 3, top). Furthermore, the
subject’s force alternated between tension (positive) and com-
pression (negative), depending on the crank angle (Fig. 3,
bottom). Some minor differences appeared between the two
turning directions.

Despite the appearance of occasional differences between
CW and CCW performance, the population means of speed did
not show any statistically significant differences between the
CW (0.37 � 0.11 rev/s), and CCW (0.40 � 0.10 rev/s)
conditions (P � 0.539). There was also no significant differ-
ence between mean normal force in the CW (�0.58 � 1.65 N),
and CCW (�0.12 � 1.43 N) conditions (P � 0.462). Further-
more, the mean normal force was not significantly different
from zero in the CW condition (P � 0.325, �SID � 0.0253), or
CCW condition (P � 0.811, �SID � 0.0253). Figure 4 displays
these dependent measures as a function of mean speed, with
each point representing the subject average of all trials per
condition. This figure illustrates the lack of discernible differ-
ences between the two rotation directions.

Speed and Force at Instructed Speeds

In these trials, subjects were instructed to turn at one of three
speeds, in both CW and CCW directions, with visual feedback
provided. Before all subsequent analyses, the data were
screened for any learning effects. We found no evidence of
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Fig. 3. Representative data from one subject’s tangential speed (top) and
normal force (bottom) with respect to crank position at comfortable speed.
Blue lines indicate clockwise (CW) trials, and brown lines indicate counter-
clockwise (CCW) trials. Each line represents binned speed or force values for
1 of the 10 trials. The shading indicates 1 SD from the mean across trials.
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learning over the duration of the experiment reported in this
study. Linear regressions of all dependent measures, including
mean and SD of speed and force, yielded regressions with R2

values � 0.10. Figure 5 shows mean speed and force of all
subjects with respect to crank angle for the slow, medium, and
fast conditions. Each line represents the mean across all sub-
jects, and the shadow band represents 1 SD around the mean.
The figure reveals a noticeable pattern with respect to crank
angle in the two dependent measures.

Figure 6 summarizes mean and SD of speed and normal
force for the three different target speeds and two directions.
The four dependent measures were analyzed with respect to the
experimental conditions, speed and direction. Mean speed
showed only a main effect of target speed (F2.0,18 � 3579.51,
P � 0.001), indicating that, as expected, subjects could suc-

cessfully perform this task. Mean speed showed no main effect
of direction nor any interaction. The SD of speed showed a
significant interaction between speed and direction (F2.0,18 �
5.32, P � 0.015) and a main effect of speed (F2.0,18 � 477.50,
P � 0.001). Post hoc pairwise t tests identified significant
differences between CW and CCW at the medium and fast
speeds, as well as the evident differences between slow, me-
dium, and fast speeds. Figure 6 shows that the interactions,
while significant, were negligible in magnitude. Thus target
speed was the predominant factor influencing the mean and SD
of speed.

Analysis of the mean normal force (Fig. 6, bottom left)
revealed a significant interaction between speed and direction
(F2.0,18 � 3.75, P � 0.043), and a main effect of target speed
(F2.0,18 � 258.88, P � 0.001). There was no significant effect
of direction. Post hoc pairwise t tests identified a significant
difference between CW and CCW at the fast speed. Addition-
ally, significant differences were identified between the slow,
medium, and fast speeds for both directions. The large differ-
ence between the medium and fast conditions was clear,
whereas the significant difference between the slow and me-
dium speeds was less pronounced. As above, we regarded the
interactions as negligible. Lastly, analysis of the SD of normal
force revealed only a significant main effect of speed
(F2.0,18�749.292, P � 0.001). Target speed was the predom-
inant factor influencing the mean normal force.

In the instructed speed trials, occasional catch trials occurred
in which visual feedback was withheld. Comparing the depen-
dent measures for the catch trials and the immediately preced-
ing trials with visual feedback assessed whether visual feed-
back affected subject performance. Three-way ANOVAs were
conducted for all dependent measures. These comparisons
resulted in several significant interactions, including three-way
interactions. However, this reflected the strength of the statis-
tical analysis rather than the magnitudes of these effects, which
were negligible (see APPENDIX B).

Zero-Force Trajectory

The bidirectional interaction between the forces exerted on
the constraint and the force observed at the hand was described
by mechanical impedance. A model of upper-limb mechanical
impedance was assumed, and the zero-force trajectory (defined
above) was computed. Figure 7 shows one example from a
representative subject in the three speed conditions in the left
panels; the right panels shows the mean trajectories from all
subjects. The black dashed circle is the circular path of the
crank. It is clear in all subjects that the zero-force trajectory
deviated from the circular path, both closer to and further from
the center of the crank circle, and was roughly elliptical.
Furthermore, the speed of the zero-force trajectory, shown by
the color gradient, varied systematically along the elliptical
path. Visually, the regions of high speed corresponded well to
the regions with low curvature and vice versa. This observation
motivated a test of the hypothesis that a systematic speed-
curvature relation is found in the motion consequences of
neural activity.

To test this relation quantitatively, the extrema of speed and
curvature were determined, and the difference in crank angle
between speed and curvature extrema � was computed. Exact
temporal coincidence would lead to zero � values. Figure 8
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shows representative profiles of the speed and curvature of the
zero-force trajectory for a single trial performed by one subject
at each of the three speed conditions in the CW direction. The
circles at the extrema highlight that the minima in the speed
profile are in close temporal vicinity of the maxima of curva-

ture. The data of the same subject from Fig. 7 are summarized
in the histograms for the three speed conditions. The 95%
confidence intervals of the mean for the � parameter of all
subjects in the six conditions were less than 3% of a revolution,
indicating that the curvature peaks corresponded to the speed
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valleys. Figure 9 displays the 95% confidence intervals of the
mean of the � parameter for all 10 subjects. This result
recapitulates observations of unconstrained hand motion.

Sensitivity Analyses of the Zero-Force Trajectory and its
Effect on the Speed-Curvature Relation

The zero-force trajectory is a construct derived from our
experimental observations based on several assumptions com-
bined with parameter values from the published literature. To
assess the sensitivity of this construct to the assumptions used
to compute it, key parameters of the model were varied over a
3:1 range. A linear time-invariant first-order model of mechan-
ical impedance was assumed, with damping proportional to the
assumed stiffness. Values for the gain term G were [0.25, 0.50,
0.75] (slow and medium), and [0.75, 1.50, 2.25] (fast); values
of the proportionality constant � were [0.025 s, 0.05 s, 0.075 s]
(slow and medium), and [0.05 s, 0.1 s, 0.15 s] (fast). We
anticipated that, if the impedance was varied, the zero-force
trajectory would change, and it did (see APPENDIX C). Neverthe-
less, the coincidence of the curvature and speed extrema was

still observed, even when the zero-force path changed shape.
The 95% confidence interval of the mean of � was always less
than 4% of a revolution from zero. Hence, the coincidence
between curvature and speed extrema was not sensitive to the
particular values of stiffness and damping, and the observed
results were robust.

DISCUSSION

Long-standing experience in robotics has shown that phys-
ical interaction is challenging (Colgate and Hogan 1989, 1988;
Paul 1987; Whitney 1977). Specifically, contact with a kine-
matic constraint may compromise both dynamic and static
stability (Rancourt and Hogan 2001, 2009). It is, therefore,
quite remarkable that humans do not display any sign of
instability in tasks such as opening a door or turning a crank.
In fact, this discrepancy highlights a more general issue and
challenge in the study of motor control: observations of biol-
ogy disguise the control problems that have been solved
because unsuccessful strategies tend to leave the gene pool. In
contrast, engineering studies make some problems obvious
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(machines often do not work as planned), although their
solutions may be obscured. A combined approach, drawing on
both engineering and biology, promises superior insight.

The present study examined how humans managed physical
interaction with a kinematic constraint by investigating their
patterns of motion and force while turning a crank. This action
is typical of many activities of daily living that humans
perform with ease, with no evidence of the instability that
robots typically exhibit. However, it has been proven that
properties of interactive dynamics (mechanical impedance)
afford a general solution to the stability problem: coupled
stability is guaranteed if mechanical impedance mimics that of
an energetically passive object (Colgate and Hogan 1989,

1988). Studies of human limb impedance show that it appears
to have this property (Lee et al. 2014a, 2014b). Clearly,
mechanical impedance is an important aspect of peripheral
neuromechanics and must be taken into account if we wish to
disentangle peripheral neuromechanics from central control.

That is the motivation behind the construct that we have
called the zero-force trajectory. It is the motion that would
have occurred if the peripheral mechanics and external forces
were not present. By definition, the zero-force trajectory is a
summary of one aspect of the underlying neural commands,
expressed in terms of motion. Even though the hand path is
circular, i.e., of constant curvature, the zero-force trajectory
may not be exactly circular. In that case, if the speed-curvature
relation is of neural origin, we would expect it to reemerge in
the zero-force trajectory. Our results, in fact, showed that a
speed-curvature relation observed in unconstrained movements
reemerged in the zero-force trajectory.

Even if stability is assured, if the action is controlled in
terms of motion, negotiating a constraint may require detailed
knowledge of the constraint and precise musculoskeletal coor-
dination. Evidence from reaching studies suggests that the
control of unconstrained hand motion involves some form of
internal model. That model includes kinematics, relating hand
position to joint angle or muscle length, and dynamics (of at
least the musculoskeletal system), relating muscle force to
hand motion (Kluzik et al. 2008; Lackner and Dizio 1994;
Wolpert et al. 1995, 1998). However, constrained motion
introduces a “closed chain” that changes both the kinematic
and dynamic models and makes them much more challenging
(Slotine and Asada 1992).

In robotics, one proposed approach to constrained motion is
“hybrid control”: parse the work space into independent direc-
tions and control force when motion is zero, i.e., normal to a
constraint, and control motion when force is zero, i.e., tangent
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to a constraint (Khatib 1987; Mason 1981; Raibert and Craig
1981). While consistent with recent work by Chib et al. (2009),
it requires precise knowledge of the constraint to identify the
normal and the tangent. Such precision in human movement
control seems implausible. Instead, humans may exploit the
“softness” of neuromuscular mechanical impedance to reduce
the required knowledge and precision. Our experiments were
designed to explore the plausibility of such a simplified ap-
proach. For that reason, this disarmingly simple task may
provide significant insight about how humans manage more
sophisticated tools.

Two previous studies investigated pen tracing on the inner
edge of a template (Catavitello et al. 2016; Lacquaniti et al.
1983). Catavitello and colleagues reported differences in the
speed-curvature relation during drawing motions performed in
air versus in water. They suggest that the dynamics of the limb
itself must be considered. Unlike the present study, these were
“half-space” constraints, which required nonzero unidirec-
tional normal force. Here we considered the more common
case of a constraint that could (in principle) be negotiated with
zero normal force, consistent with “hybrid control.” In this
case, deviations from zero normal force are particularly infor-
mative.

Patterns of Speed and Force

When subjects turned the crank at their preferred rate, small
fluctuations of speed about a mean value were observed.
Normal force fluctuated about zero, and both varied systemat-
ically with crank angle, consistent with previous work (Ohta et
al. 2004; Russell and Hogan 1989). The direction of rotation
had no significant effect on the means of these measures. When
subjects moved at a mean speed guided by a visual target,
fluctuations of speed and normal force that varied systemati-
cally with crank position were again observed. To test the
influence of visual feedback, we compared the dependent
measures of the catch trials (in which visual feedback was
removed) with the immediately preceding trials. While some
statistically significant differences were observed, they were
negligibly small. We concluded that removing visual feedback
had no substantial effect.

Might these fluctuations reflect imperfect compensation for
musculoskeletal dynamics? Inertial forces increase with the
speed of crank rotation, with a concomitant increase of muscle
force and hence muscle noise. Consistent with imperfect com-
pensation, the SDs of speed and normal force both increased
with instructed speed. To test whether the systematic variation
of speed and force with crank angle might also be due to
imperfect compensation, simulations of the passive inertial
dynamics of the arm constrained by the crank, but with no
muscle action, were performed. These simulations exhibited
systematic variation of both force and speed with crank angle,
but with patterns that could not account for our observations.
At the fast and medium speeds, the magnitudes of simulated
normal force were greater than observed, indicating that sub-
jects partially compensated for inertial effects. Most notably, at
the slowest speed, the simulated normal force was essentially
zero. In fact, this was one reason why such a slow speed (over
13 s per revolution) was chosen. In contrast, the pattern
displayed by human subjects was quite different (Fig. 5). This
indicated that incorrect compensation for inertial dynamics was

not the cause of the observed fluctuations in speed and normal
force.

The Zero-Force Trajectory

The zero-force trajectory is a construct based on measured
force and motion, combined in a model of peripheral neuro-
mechanics. It allows us to “peel back” the peripheral neuro-
mechanics to uncover one consequence of the underlying
neural commands, and that consequence is expressed in terms
of motion. It is similar to, but distinct from, the virtual
trajectory of the equilibrium-point hypothesis (Bizzi et al.
1982, 1984; Feldman 1966, 1986). That is because the for-
ward-path dynamics between neural input and actual motion is,
in general, quite different from the interactive dynamics (me-
chanical impedance) used to construct the zero-force trajec-
tory. Because of neural transmission delays, excitation-con-
traction coupling and other dynamic effects in the forward
path, the zero-force trajectory may differ from the virtual
trajectory (Gribble et al. 1998). More importantly, unlike the
virtual trajectory, we remain agnostic about whether the central
nervous system actually encodes the zero-force trajectory. It is
an observation defined by measurements of hand force and
motion combined with an estimate of interactive dynamics.
However, while it reflects a consequence of neural activity, it
is unknown whether this quantity is represented in higher-level
activity of the central nervous system. Similarly, an actual
unconstrained trajectory is also a consequence of neural activ-
ity, but observation of an actual trajectory is not sufficient to
determine how neural activity controls or encodes this quan-
tity; nevertheless, observations of actual motion have proven to
be informative. The zero-force trajectory is a way to interpret
measured force and motion, in combination with a reasonable,
albeit simplified, model of peripheral neuromechanics. As with
actual unconstrained trajectories, we believe observations of
the zero-force trajectory are informative.

If the exact neuromechanical impedance were known for
each subject, this construct would be an exact (i.e., noise-free)
measure of the motion consequences of neural commands.
However, as we used average measures of neuromechanical
impedance obtained from different subjects and during static
conditions, this construct is at best a noisy and uncertain
estimate based on a number of assumptions. It assumed a
model of neuromuscular dynamics that is time invariant, first
order, and linear. All of these assumptions are questionable, or
even demonstrably incorrect, but they served as workable
approximations. The most critical assumptions used to com-
pute the zero-force trajectory were that impedance was linear
and time invariant, with a constant stiffness and damping in
joint coordinates. Linearization is valid if the actual (nonlinear)
interactive dynamics are differentiable, and deviations from the
linearization operating point are small. The proximity of the
zero-force trajectory to the circular constraint path suggests
that the linear approximation was reasonably accurate. The
time-invariant parameters were based on measurements made
under static postural conditions (Flash 1987; Mussa-Ivaldi et
al. 1985). The slow speed condition was quasi-static, close to
postural conditions. Therefore, the elliptical zero-force path
seen in this condition was least sensitive to the assumption of
time invariance. The analysis also assumed that stiffness and
damping were symmetric, proportional to each other, con-
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nected with a specific topology,1 and that the same values of
stiffness and damping could be applied to all subjects. The
assumptions of symmetric stiffness and damping coefficients
may be justified, as this is sufficient to ensure a stable inter-
action (Colgate and Hogan 1988). Moreover, the study from
which we derived the stiffness parameters also reported a
symmetric stiffness. The proportionality between stiffness and
damping implies first-order interactive dynamics, consistent
with experimental observations (Hill 1938). However, it also
implies that a single time constant describes the interactive
dynamics of all muscles contributing to the overall mechanical
impedance.

Given the uncertain and approximate nature of these as-
sumptions, the regularity of the pattern that emerged is striking.
Unlike the findings of Gomi and Kawato (1996), our analyses
yielded a zero-force trajectory close to the actual hand path,
consistent with the work of Won and Hogan (1995). In addi-
tion, the statistical reliability of our estimates is quite remark-
able, even though we varied the impedance parameters over a
3:1 range. It suggests that, from macroscopic behavioral mea-
surements, we can approximate at least some consequences of
the underlying neural processes, i.e., that behavior can be
informative about underlying neural processes (Krakauer et al.
2017).

Speed-Curvature Relation in the Zero-Force Trajectory

In a study of unconstrained two-joint upper-limb reaching,
Abend et al. (1982) reported that human hand trajectories
exhibited a coincidence between curvature maxima and speed
minima: speed decreased when the curvature increased. When
studied in explicitly elliptical trajectories, the speed-curvature
relation was described by a two-thirds power law (Lacquaniti
et al. 1983), such that the relation between instantaneous
angular velocity, A(t), and the curvature, C(t), was expressed as
A(t) � KCC(t)2/3, where KC is a constant (the so-called velocity
gain factor). The law can also be written in terms of a one-third
power law relating the instantaneous tangential velocity, V(t),
and the radius of curvature, R(t) � 1/C(t), and expressed as
V(t) � KRR(t)1/3, where KR is a constant. For this reason, it is
often referred to as the two-thirds or one-third power law,
respectively.

This power law was reported for drawing ellipses and
several other geometric figures (such as lemniscates); however,
the reason for this relation was not clear. Viviani and Terzuolo
(1982) originally suggested it to result from central computa-
tional constraints, which occur during the translation of move-
ment trajectories into the appropriate motor parameters. How-
ever, others showed that this relation might simply emerge as
a result of neuromechanics or oscillatory movements in joint
space (Gribble and Ostry 1996; Schaal and Sternad 2001;
Sternad and Schaal 1999). Intuitively, it makes sense that the
limb slows down when accelerating around a corner, because
the arm is an inertial body actuated by muscles: finite force
actuators with limited stiffness. Using the lambda-equilibrium-
point model, Gribble and Ostry (1996) generated an input
command that did not follow a speed-curvature relation. Nev-
ertheless, the simulated motion exhibited a speed-curvature
relation. When testing the alpha-equilibrium-point model as

simulated by Flash (1987), they observed the same result. In
other work, Schaal and Sternad (Schaal and Sternad 2001;
Sternad and Schaal 1999) showed that a power-law relation
between hand speed and curvature relation emerges from
simple oscillatory joint motions in a 7-degrees-of-freedom arm
model. This was motivated by the fact that two sinusoids of the
same frequency but with different phases, as in a Lissajous
plot, produce the power-law behavior exactly. More impor-
tantly, this account predicted systematic deviations from a
power-law relation for large motions, which were confirmed by
experimental observation.

Other observations across multiple tasks and extremities, as
well as in the perception of actions, provided evidence that the
power-law relation is of nonmechanical, i.e., neural origin
(Dayan et al. 2007; Hicheur et al. 2005; Maurice et al. 2018b;
Viviani and Flash 1995). For example, Massey et al. (1992)
performed an experiment where subjects grasped a three-
dimensional isometric force-sensing handle and exerted forces
continuously to draw circles, ellipses, and lemniscates on a
screen, with and without visual feedback. The power-law
speed-curvature relation was observed even when the hand did
not move, indicating that inertial dynamics alone could not be
its cause. Nevertheless, a later study by Gribble and Ostry
(1996) showed that biomechanics may account for a speed-
curvature relation, even during isometric conditions. Other
research has shown that movement production involves the
cooperative interaction of large neuronal populations (Georgo-
poulos et al. 1986). Schwartz (1994) used a population vector
method to interpret one aspect of neural activity as representing
spatial motions. This information was then used to visualize
motor cortical representations of wrist trajectories, which were
remarkably similar to the actual wrist motions made by mon-
keys as they drew spirals. Surprisingly, a power law relating
speed and curvature was observed in this cortically derived
representation of motion. Neuromechanics alone cannot ac-
count for these observations.

A possible resolution of this controversy is that the neural
controller and the neuromechanical periphery coevolved to
embody similar dynamic structures and constraints. Long com-
munication delays are a core challenge of human motor con-
trol. Coping with these delays requires a controller that favors
predictability, even over energetic cost in some cases (Bazzi et
al. 2018; Koeppen et al. 2017; Maurice et al. 2018a; Nasse-
roleslami et al. 2014; Sternad and Hasson 2016). Smoothness
quantified by minimizing mean-squared jerk provides a mea-
sure of predictability, and maximizing smoothness has been
shown to account for the coordination of simple reaching
movements, including an account for the two-thirds power law
(Flash and Hogan 1985; Richardson and Flash 2002; Schaal
and Sternad 2001; Sternad and Schaal 1999; Viviani and Flash
1995). More recent work by Huh and Sejnowski (2015)
showed that maximizing smoothness along a curved path
yields a spectrum of power-law speed-curvature relations.

Periodic actions are (in principle) infinitely predictable and
have been proposed as one class of dynamic primitives used to
construct motor behavior (Hogan 2017; Hogan and Sternad
2012, 2013; Ronsse et al. 2009; de Rugy and Sternad 2003;
Schaal and Sternad 1998; Sternad 2008; Sternad et al. 2000).
An elliptical path may be generated by combining two sinu-
soids of the same frequency at a nonzero relative phase,
although possibly of different amplitudes. The resulting trajec-

1 In this context, “topology” refers to how the stiffness and damping are
connected in the model.
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tory (i.e., time course of speed along the elliptical path)
necessarily exhibits a power-law relation between speed and
curvature. Generating an elliptical zero-force trajectory via
out-of-phase sinusoids is consistent with our observations.
The same model (a zero-force trajectory composed of sim-
ple dynamic primitive oscillations) may account for the
observations of Massey et al. (1992) and possibly those of
Schwartz (1994). Perhaps more important, it is also consis-
tent with prioritizing predictability over other aspects of
performance, including the variability of actual hand speed
and exerted normal force.

Conclusion

Unconstrained curved movements exhibit a systematic
relation between speed and curvature. This has been attrib-
uted to either neural or mechanical causes, without resolu-
tion of the debate. To obtain a new perspective on this open
question, this study examined movements against a simple
kinematic constraint. By design, the experiment confined the
hand to a circular path with constant curvature; speed was
controlled by instruction with visual feedback. If control in
constrained motion is focused on hand trajectories, there
should be no reason for a systematic variation of speed as
curvature was constant. Nevertheless, systematic fluctua-
tions of speed and normal force were observed at all speeds,
unaffected by the presence or absence of visual feedback.
When the influence of peripheral neuromechanics was sub-
tracted based on a biomechanical model to identify a zero-
force trajectory, an elliptical shape emerged that exhibited
the widely observed relation between speed and curvature
extrema: Extrema of curvature and tangential speed were
systematically time aligned. This relation persisted even
when the stiffness and damping parameters of the model
were varied over a wide range. These findings provide
evidence that the speed-curvature relation is due, at least in
part, to neural processes, possibly reflecting their co-evolu-
tion with peripheral dynamic structures. These results are
also a first demonstration that the zero-force trajectory may
successfully disentangle neural and biomechanical factors
underlying motor actions.

APPENDIX A: MODELING A TWO-LINK MANIPULATOR
COUPLED TO A CRANK

Knowledge of the subject’s inertia is required to develop a model
and simulate the system. Inertia parameters were estimated based on

the results of the cadaver studies of Dempster (Miller and Nelson
1973; Plagenhoef 1971). The arm and forearm plus hand were denoted
by links 1 and 2, respectively. Each of the body segments was
described by the following parameters: length, l; mass, m; inertia, I;
and center of mass, c. The length l1 was the distance from the shoulder
to the elbow. The length l2 was the distance from the elbow to the
center of the fist. Link 2 was considered a combination of the forearm
and hand. The hand was assumed to be a point mass at the end of the
forearm. Limb parameters are reported in Table A1. The inertia of the
crank about the pivot was 3.716 � 10�3 kg/m2. Analysis of the mean
and median of all subjects’ inertial parameters showed that subject 1
was representative (Doeringer 1999).

The model of the arm and crank system was constructed in the
same manner as performed by Ohta et al. (2004). Figure A1 displays
the variables and notation used in the development of the model.
The system has one degree of freedom; therefore, there is always
a kinematic relation that can be used to transform from Cartesian
position, x � [x,y]T, to joint position, q � [q1,q2]T, and to crank
position, 
, where the center of the crank is defined as xc � [xc,yc].

x � �l1C1�

l1S1�

l2C12

l2S12
� � �rcos


rsin
 � � xc (A1)

The notations S1, C1 denote sin(q1), cos(q1) and S12, C12 denote
sin(q1 � q2), cos(q1� q2). The radius of the crank is r, the damping
of the crank is bc, and the inertia is I. The arm denoted subscript 1 and
the forearm denoted subscript 2 are described by length l1, l2; mass
m1, m2; inertia about the z axis I1, I2; and center of mass distance from
the joint axis c1, c2. The force on the handle is F � [Fx,Fy]

T, with the

Table A1. Human limb inertia properties for this experiment

Subject No. l1, cm c1, cm m1, kg I1, kg/m2 l2, cm c2, cm m2, kg I2, kg/m2

1 36.8 16.1 2.23 0.0313 37.5 23.6 2.25 0.0440
2 36.2 15.8 2.03 0.0276 36.8 23.6 2.10 0.0395
3 32.4 14.1 2.20 0.0239 33.0 20.7 2.23 0.0340
4 36.2 15.8 2.61 0.0354 38.1 23.5 2.55 0.0515
5 34.9 15.2 2.03 0.0257 35.6 22.7 2.10 0.0369
6 29.2 12.7 2.35 0.0208 33.7 20.8 2.35 0.0375
7 37.5 16.3 1.97 0.0287 37.5 24.0 2.05 0.0401
8 34.3 15.0 1.97 0.0240 36.8 23.7 2.05 0.0385
9 36.8 16.1 2.03 0.0286 38.7 24.9 2.10 0.0435

10 34.3 15.0 2.29 0.0279 33.7 21.1 2.30 0.0364

1, Arm; 2, forearm; l, length; c, center of mass distance from the joint axis; m, mass; I, inertia about the z axis.

n
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Fy

Fx r

θ  

y

x
τ1

q1
l1c1

l2 c2
q2

τ2

I1

I2

I

Fig. A1. Model of crank rotation task that displays the sign convention and
notation used in the computations. See APPENDIX A for definitions of terms.
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normal unit vector, n, and tangential unit vector, e. The joint torque is
denoted � � [�1,�2]T.

From the sum of moments acting on the crank,

I
̈ � bc
̇ � reTF (A2)

summation of moments about the shoulder,

Mq̈ � h � � 	 JTF (A3)

and the kinematic relation that equates the acceleration at the handle
to the acceleration at the hand,

ẍ � Jq̈ � J̇q̇ � r�
̈e 	 
̇2n� (A4)

a model of the system can be constructed. Parameters comprising
these equations include the mass matrix,

M�q�

� �m1lc1

2 � m2�l1
2 � c2

2 � 2l1c2C2 � I1 � I2� m2�c2
2 � l1c2C2� � I2

m2�c2
2 � l1c2C2� � I2 m2c2

2 � I2
�

(A5)

the centrifugal and Coriolis forces,

h � �	m2l1c2S2�2q̇1q̇2 � q̇2
2�

m2l1c2S2q̇1
2 � (A6)

and the Jacobian relating unconstrained differential arm motions to
hand motions.

J � �	�l1S1 � l2S12� 	l2S12

l1C1 � l2C12 l2C12
� (A7)

From Eqs. A2, A3, and A4, the relation in Eq. A8 can be shown

R
̈ � H � reTJ	T� (A8)

where the configuration-dependent damping is

R � I � r2eTJ	TMJ	1e (A9)

and the configuration-dependent inertia is

H � bc
̇ � reTJ	T�h 	 MJ	1�r
̇2n � J̇q̇�� (A10)

From Eqs. A2, A3, and A4, we can also solve for F,

F � �JM	1JT � r2I	1eeT�	1�JM	1�� 	 h� � J̇q̇

� r
̇�
̇n � bcI
	1e�� (A11)

APPENDIX B: TRIALS AT PREFERRED SPEED WITHOUT
FEEDBACK

To test whether visual feedback altered behavior, we compared the
dependent measures for the catch trial (without visual feedback) and
the immediately preceding trial with visual feedback. Figure B1
shows that, even though some of the effects became statistically
significant, their magnitude was negligible.

APPENDIX C: VARIED IMPEDANCE

The zero-force trajectory is a construct derived from experimental
observations based on several assumptions combined with parameter
values from the published literature. To assess the sensitivity of this
construct to the assumptions used to compute it, key parameters of the
model were varied over a 3:1 range. We expected the zero-force path
to change, and it did (Fig. C1). However, the temporal coincidence
between curvature and speed extrema was robust.
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