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Abstract

Virtual environments have been widely used in motor neuroscience and rehabilitation, as they afford tight control of sensorimo-
tor conditions and readily afford visual and haptic manipulations. However, typically, studies have only examined performance in
the virtual testbeds, without asking how the simplified and controlled movement in the virtual environment compares to behavior
in the real world. To test whether performance in the virtual environment was a valid representation of corresponding behavior
in the real world, this study compared throwing in a virtual set-up with realistic throwing, where the task parameters were pre-
cisely matched. Even though the virtual task only required a horizontal single-joint arm movement, similar to many simplified move-
ment assays in motor neuroscience, throwing accuracy and precision were significantly worse than in the real task that involved all
degrees of freedom of the arm; only after 3 practice days did success rate and error reach similar levels. To gain more insight into
the structure of the learning process, movement variability was decomposed into deterministic and stochastic contributions. Using the
tolerance-noise-covariation decomposition method, distinct stages of learning were revealed: While tolerance was optimized first in
both environments, it was higher in the virtual environment, suggesting that more familiarization and exploration was needed in the
virtual task. Covariation and noise showed more contributions in the real task, indicating that subjects reached the stage of fine-tuning
of variability only in the real task. These results showed that while the tasks were precisely matched, the simplified movements in the
virtual environment required more time to become successful. These findings resonate with the reported problems in transfer of ther-
apeutic benefits from virtual to real environments and alert that the use of virtual environments in research and rehabilitation needs
more caution.

NEW & NOTEWORTHY This study compared human performance of the same throwing task in a real and a matched virtual environ-
ment. With 3 days’ practice, subjects improved significantly faster in the real task, even though the arm and hand movements were
more complex. Decomposing variability revealed that performance in the virtual environment, despite its simplified hand movements,
required more exploration. Additionally, due to fewer constraints in the real task, subjects could modify the geometry of the solution
manifold, by shifting the release position, and thereby simplify the task.

noise; skill learning; throwing; variability; virtual environment

INTRODUCTION

Virtual environments have been widely employed for
motor learning, both in basic neuroscience research and in
rehabilitation (Burdea and Coiffet 2003; Henderson et al.
2007; Holden and Todorov 2002; Krakauer et al. 1999;
Saposnik et al. 2011; Shadmehr and Mussa-Ivaldi 1994). In a
typical virtual environment, subjects see a visual display of a
target or an object together with their online measured

movements in the context of a task, such as reaching to a tar-
get. Interaction with the objects in the virtual workspace
can be enhanced with haptic joysticks, sensing gloves, or
robotic manipulanda that feed forces that are created in
the virtual environment back to the user. In rehabilitation,
virtual environments have been embraced, as they can
create motivating games with adjustable parameters to-
gether with precise and automatized documentation of
performance improvements. They also afford the therapist
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to simplify the task and titrate the difficulty according to
the individual’s needs.

In basic motor neuroscience research, virtual environ-
ments have served as platforms in which functional behav-
iors can be simplified to those features that are of interest to
address a scientific question. In the spirit of scientific reduc-
tion, unnecessary variability and “clutter” can be eliminated
to allow cleaner experimental assays. Visual and haptic
interfaces with (close-to) real-time interaction afford study-
ing the effect of various types of feedback to the subject,
both realistic or experimentally manipulated, such as aug-
menting the error, adding or attenuating noise, or creating
sensory conflicts (Caballero and Rombokas 2019; Chu et al.
2013; Di Fabio and Badke 1991; Hasson et al. 2016; Sharp et
al. 2011; Wei et al. 2005). Typically, the movements in a vir-
tual environment are constrained to involve fewer degrees of
freedom to focus on the chosen scientific questions. For
example, a prominent paradigm in recent research on motor
adaptation has been reaching of a two-joint limb in the hori-
zontal plane (Bagesteiro and Sainburg 2003; Diedrichsen et
al. 2005; Georgopoulos et al. 1982; Karniel and Mussa-Ivaldi
2003; Shadmehr and Mussa-Ivaldi 1994). This simple point-
ing task eliminated redundancy in the joint degrees of free-
dom, the effect of gravity and surface friction, and also
“perturbations” from contact with objects. Numerous
insights have resulted from this line of research, such as
characteristics of the adaptation process and the role of in-
ternal models. It is fair to say that these findings are assumed
to “scale up” to more complex, i.e., realistic behavior.
Therefore, it is surprising that it has yet remained untested
whether the principles of control and adaptation hold up in a
matching behavior in a more realistic environment. The pres-
ent study is a first step to compare how humans learn an
equivalentmotor task in a virtual and a real environment.

Our study examined a simple throwing task to compare
performance in a virtual testbed with that in a realistic but
closely matched task. All task parameters were identical to
the best of our abilities, i.e., target size and distance, ball
size, and weight, ball flight properties. However, the throw-
ing movements themselves differed: in the virtual set-up,
they were controlled single-joint forearm movements with
hand opening for ball release, while the real task involved
full arm movements in three dimensional (3D) space and a
ball release with hand and fingers. We chose throwing as our
testbed, as it is a demanding sensorimotor skill that requires
practice. As it is also a fundamental skill that humans have
developed over evolutionary time, it has received consider-
able attention in motor neuroscience, biomechanics, devel-
opmental psychology, and evolutionary biology (Calvin
1982; Crozier et al. 2019; Haywood and Getchell 2019;
Lombardo and Deaner 2018; Maselli et al. 2019). However,
the analysis of unconstrained overarm throwing is challeng-
ing and reliable kinematic measures are hard to come by.
Hence, most studies simplified the skill to afford sensitive
and reliablemeasures andmechanical modeling.

For example, a biomechanical analysis of throwing exam-
ined a two-degree-of-freedom model arm to determine the
timing limits of ball release and argued, on the basis of a
number of assumptions, that the timing window for an opti-
mal throw is as short as 2 ms (Chowdhary and Challis 1999).
Using a dart throwing action confined to the sagittal plane as

their testbed, Nasu et al. (2014) similarly reported an
extremely short timing window for accurate ball releases. In
contrast, Smeets et al. demonstrated, also in a simplified
dart-throwing task that it is less the timing but more the sen-
sitivity to velocity errors that characterizes movement strat-
egies of experts (Smeets et al. 2002). A mathematical
analysis of overarm and underarm throwing, also confined
to two dimensions, demonstrated that different regions in
the space spanned by the two release variables have different
sensitivity to error and noise (Venkadesan and Mahadevan
2017). Common to these and other studies is that they all
simplified the full throwing action to gain insight into the
control demands of this complex sensorimotor skill.

In the same vein, Sternad and colleagues developed a
throwing task in a virtual environment that reduced the
throwing action to a simple forearm extension in the hori-
zontal plane, where opening the hand released the virtual
ball that aimed to hit a virtual target (Cohen and Sternad
2009; M€uller and Sternad 2004, 2009). Despite this simplic-
ity, this virtual task maintained the essential redundancy in
throwing: position and velocity at ball release fully deter-
mined the ball trajectory and its hitting accuracy. On the ba-
sis of a simplified model of the task, the solution space was
mathematically derived and rendered a solution manifold
that comprised a set of strategies with the same zero error.
The core result of these studies was that not only the mean
error decreased with practice, but that the distribution of
release variables also changed with respect to the solution
manifold. Three “costs” were defined that could quantify
stages inmotor learning from the distribution of release vari-
ables. Specifically, the initial exploration of the solution
space to find the most error-insensitive strategy was quanti-
fied by “tolerance-cost” (more details below). Further
improvement was achieved by exploiting covariation
between execution variables (covariation-cost) and, to a
lesser extent, by reducing the stochastic dispersion or noise
(noise-cost) (Abe and Sternad 2013; Chu et al. 2016; Cohen
and Sternad 2009; M€uller and Sternad 2004; Van Stan et al.
2017).

The present study employed this decomposition method
to compare motor learning of throwing in a virtual and a real
environment. Subjects either performed a virtual task or a
real task in which all physical parameters were matched,
such that performance could be evaluated with exactly the
same metrics. Importantly, the two task versions involved
different arm and handmovements: the virtual task reduced
the throwing action to a single-joint elbow flexion in the hor-
izontal plane, while real throwing involved the entire arm
and hand with all its degrees of freedom. Further, the virtual
workspace displayed a two-dimensional (2D) top-down view
of the target, rather than a 3D perspective with depth infor-
mation. Hence, the objective of this study was to evaluate
the effect of this experimental reduction and critically ques-
tion whether findings in such virtual settings can “scale up”
tomore realistic behaviors.

Two groups of subjects practiced the real and virtual
throwing task over 3 days and performance error and vari-
ability were compared. Counter to the expectation that sim-
plified movements may reduce the coordinative challenge,
results showed that the virtual task performance was signifi-
cantly worse and only approached the real performance after
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3 days of practice. The variability decomposition revealed
that finding the error-tolerant solution took longer in the vir-
tual task and was the main contributor to this difference.
Only in the real task did subjects reach a stage where they
could fine-tune their throws. One potentially important fac-
tor to this superior task performance in real throwing was
that subjects had some leeway to position the ball release
and could, thereby, slightly modify the solution manifold in
favor of successful throws.

METHODS

Participants.
A total of 16 healthy right-handed undergraduate and
graduate students (10 female, 6 male, mean age 23.4 yr)
participated in the two experiments. Eight subjects were
randomly assigned to the virtual task, and eight subjects
were assigned to the real task. All subjects were informed
about the procedures and gave written consent before the
data collection; they received $30 compensation upon
completion of the three practice sessions. The protocol
was approved by the Institutional Review Board at
Northeastern University.

Experimental paradigms.
The basic experimental task was inspired by the British pub
game skittles, which is similar to the playground game teth-
erball in the United States. In the skittles game, subjects
throw a ball tethered to a vertical post and aim to knock
down a target skittle on the other side of the post (Fig. 1A).
This study used two sets of equipment to compare motor
learning in a virtual and a real environment.

Virtual skittles.
The virtual set-up was identical to what was used in previous
studies (e.g., Hasson et al. 2016; Zhang et al. 2018). Subjects
stood in front of a back-projection screen at a distance of 1.5m
and rested their dominant arm on a horizontal manipula-
ndum adjusted to a comfortable height (Fig. 1B). The single-
degree-of-freedom lever arm restricted their movements to
rotations around the elbow joint in the horizontal plane. This
simplification of the movement enabled fast recording and
rendering of the movement in the virtual environment with
minimal delay. Angular rotations of themanipulandumwere
recorded by an optical encoder with a sampling frequency of
1,000 Hz (BEI Sensors, Goleta, CA); the forearm movements
were shown in real time on the screen as a purple bar rotating
around a pivot. A wooden ball was affixed to the distal end of
the manipulandum with a small force sensor attached to it
(Interlink Electronics, Camarillo, CA). Subjects grasped this
ball by closing their fingers onto the force sensor. To throw
the virtual ball, subjectsflexed their forearmandopened their
hand as in a forearm Frisbee throw. Releasing the finger from
the force sensor initiated the ballflight. After release, the sub-
ject saw the ball traversing an elliptic trajectory around the
post (Fig. 1C). To ensure that subjects understood the task and
the ball trajectories as shown on the screen, the experimenter
showed the subject a small table version of the real skittles
game and demonstrated the ball release and how it traversed
thepost tohit a target skittle.

The ball trajectory was calculated on the basis of the
online-measured angular position and velocity of the
manipulandum at the moment when the finger lifted from
the force sensor. Throwing performance was described by
the error defined as the minimum distance between the

Figure 1. Skittles game and the virtual environment. A: sche-
matic depiction of the real skittles game in three dimen-
sions. B: experimental setup of the virtual skittles. The
subject stands 1.5 m in front of a back projection screen
with her forearm rested on a horizontal lever arm, and the
pivot is aligned with the elbow joint. A wooden ball is
attached at the distal end of the lever arm. C: top-down
view of the workspace. The red and yellow circles represent
the center post and target, respectively; the purple bar
shows the position of the lever arm at the moment of
release. Three exemplary ball trajectories are plotted as
solid or dashed black lines. The performance error is
defined by the minimum distance between the ball trajec-
tory and the target. D: solution space and solution manifold
of the virtual task. The brown shading indicates the perform-
ance error, and the green band is the solution manifold,
with the three points corresponding to the three ball
releases in C.
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center of the target and the ball trajectory (Fig. 1C). If the
ball hit the target, i.e., the distance between the closest
point on the ball trajectory and the target center was
smaller than 1.77 cm, the target turned from yellow to
green, indicating a successful hit.

The task was projected as a 2D top-down view on the back
projection screen (200 cm � 200 cm) in front of the subject
(Fig. 1B). The large red circle depicted the top-down view of
the post with a diameter of 25 cm; the smaller yellow circle
represented the target with a diameter of 2.54 cm. The white
circle at the endof thepurplebarwas theball tobe thrown (di-
ameter 2.54 cm). The purple bar corresponded to the subject’s
forearm/manipulandum movement in real time. The length
of the lever arm on the screen was l=30 cm, and the pivot of
the lever was at the bottom end located at [�10 cm, �65 cm];
the origin of the workspace was defined at the center of the
post [0 cm,0 cm]. The targetwas located at [�30cm, 30cm].

Redundancy.
Throwing performance was quantified by the error between
the ball trajectory and the target center. The redundancy of
this task is illustrated in Fig. 1C, which shows three ball trajec-
tories and their error to the target. While the black line repre-
sents a trajectory that passed by the target with a non-zero
error, the two dashed ball trajectories both traversed the cen-
ter of the target with zero error, even though they were
released with two different angles and velocities. This exem-
plifies that zero error could be achieved with different combi-
nations of release angles and velocities. Mathematically, these
zero-error solutions constitute an infinite set and define the
solution manifold. A visual summary of this redundancy is
shown in Fig. 1D: The space is spanned by the two execution
variables, angle and velocity of the hand at release, that fully
determine the error. The green band represents the solution
manifold, including small errors within the threshold that
defined a successful hit (indicated by the target turning
green). The orange color shades indicate differentmagnitudes
of error associated with the different combinations of release
angles and velocities. The black boundary demarcates areas
for ball releases that hit the red post. The geometry of the so-
lution space and solution manifold is determined by the loca-
tion of the target (Zhang et al. 2018).

Physical model and definition of execution and result
variables.
This top-down projection simplified the physics of the task
to a 2D system, where the ball was suspended by two orthog-
onal, massless springs (Fig. 2A). The equilibrium point of the
ball was at the origin, the center of the post. The angle, tan-
gential velocity and the x-y positions of the ball at the
moment of release rwere calculated as:

hr ¼ hp � p=2 ð1Þ

vr ¼ � _hpl ð2Þ

xr ¼ xp � lcoshp ð3Þ

yr ¼ yp þ lsinhp ð4Þ
where hr, vr, xr and yr are the angle, tangential velocity, and
x-y position of the ball at the moment of release; hp and _hp

are the angular position and velocity around the pivot meas-
ured by the optical encoder; xp and yp are the x-y position of
the pivot, and l is the length of the lever arm (Fig. 2A).

The equations of motion for the ball xB and yB were simu-
lated starting at release using two sinusoids in the x- and y-
dimensions:

xB tð Þ ¼ Axsin xtþ jxð Þexp �t=sð Þ ð5Þ

yB tð Þ ¼ Aysin xtþ jyð Þexp �t=sð Þ ð6Þ
Note that two sinusoids with a non-zero phase difference

plotted orthogonally against each other describe an ellipse in
a so-called Lissajous plot. Ax and Ay describe the amplitudes
and jx and jy describe the initial phases of the two sine

Figure 2. Calculation of the ball trajectory. A: top-down view on the work-
space, the springs visualize that the ball trajectory was modeled by two or-
thogonal springs. Execution variables of the ball trajectory in the two-
dimensional (2D) workspace: xp, yp is the 2D position of the lever arm’s
pivot; hp is the angle of the lever arm; l is the length of the lever arm; xr
and yr is the 2D position of the ball release; vr and hr are execution varia-
bles used to calculate the ball trajectory. The thick arrow indicates the
direction of the arm movement for the throw. B: simulation of the ball tra-
jectory. Gray curves denote y =Ax sin(x) and y =Ay sin(x). Red and blue
curves are the x- and y-component of the ball trajectory with a phase shift
and added damping, producing the trajectories in the x-y workspace. The
dark purple trajectory is the resulting ball trajectory, whereas the light pur-
ple trajectory shows the trajectory without damping for reference.
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waves. The exponential terms introduce damping defined by
s. Figure 2B displays two sinusoids on orthogonal axes in
gray; the red and blue curves are phase-shifted and lightly
damped. The purple curves combine the sinusoids in a
Lissajous plot; the light purple is the undamped ball trajec-
tory, while the dark purple curve is the damped ball trajec-
tory; the latter is used in the experiment. The simulation
stopped at 1.6 s after ball release. The following equations
show how the amplitudes and phases were determined:

Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ

�vr � coshr þ xr=s
x

� �2
s

ð7Þ

Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2r þ

vr � sinhr þ yr=s
x

� �2
s

ð8Þ

jx ¼ cos�1 �vr � coshr þ xr=s
Axx

� �
ð9Þ

jy ¼ cos�1 vr � sinhr þ yr=s
Ayx

 !
ð10Þ

The natural frequency of the system x and the time con-
stant s that introduced damping into the ball flight were
defined as follows:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
� 1

s

� �2
s

ð11Þ

s ¼ 2m
c

ð12Þ

In the experiment, the spring constant was set to k = 6.7
g/cm, the mass of the ball was m = 68 g, and the damping
ratio was set to c =0.01.

In both the virtual and the real task, there were four execu-
tion variables that fully determined the single result variable
error: angular position hr, tangential velocity of the hand vr
and the x-y-coordinates of the ball at the moment of release,
xr, yr (Fig. 2A). In the virtual task, the x-y position of the ball
was constrained to the circular path of the hand fixed to the
paddle and could be calculated on the basis of the angular
position and its derivative with Eqs. 3 and 4. Hence, two var-
iables, hp and _hp, were sufficient to determine the ball trajec-
tory. Note that in this study, the solution space was
calculated with hr and vr instead of hp and _hp as in previous
studies to exactly match the calculations in the real and vir-
tual skittles task. Note that the two coordinate systems can
be affine transformed to each other as in Eqs. 1 and 2.
Although such a coordinate transformation can affect vari-
ability analyses that are based on covariance analysis, such
as principal component analysis and the uncontrolled mani-
fold analysis, this affine transformation has negligible effects
on the tolerance-noise-covariation (TNC) decomposition
(Cohen and Sternad 2009; Sternad et al. 2010).

Real skittles.
Subjects stood in front of a table upon which the skittles ap-
paratus was placed. A vertical post mounted on a tripod

stood centered on the table (Fig. 3,A and B), and the physical
configuration exactly matched that of the virtual skittles:
The center of the post defined the origin of the work space [0
cm, 0 cm] and the target was located at [�30 cm, 30 cm]. The
diameter of the bottom of the tripod was 25 cm, the height of
the post, including the tripod, was 98.8 cm. The target height
was 8.8 cm, and its diameter was 1.0 cm; it was mounted on
a spring, so that the ball could knock over the target without
it falling off the table. The radial distance of the target to the
post was 42.4 cm (as in the virtual workspace). A steel ball
(mass: 68 g, diameter: 2.54 cm) was attached to an inelastic,
light-weight nylon string (length: 99.5 cm) connected to the
top of the post; steel ball bearings were added to minimize
friction. The string was slightly longer than the post to
ensure that the vertical elevation of the ball from the table
surface remained relatively small to afford the projection of
the ball trajectory onto the 2D horizontal plane as explained
below. This allowed an exact match of the data analyses.

Subjects performed the throwing movements by grasping
the real ball (with two or three fingers) and throwing it
around the center post. To create “real throwing,” the arm
was free to move, and only the release location was specified
by the experimenter. To record the subjects’ hand and arm
movements in the real skittles game, eight reflectivemarkers
were attached to typical landmarks on the subject’s right
arm: acromion and coracoid process of the scapula (two
markers), medial and lateral epicondyle of the humerus (two
markers), dorsal side of the wrist (one marker), dorsal side of
the proximal phalanges of the thumb (one marker). For the
present analyses, only the markers on the thumb were con-
sidered. The ball was covered with reflective tape to record
the ball trajectory. Two markers identified the locations of
the post (top) and the target (top). The 3D positions of all
markers were recorded by 12 cameras placed above the sub-
ject just below the high ceiling (Qualisys, G€oteborg, Sweden).
The sampling rate was 200 Hz. Figure 3C shows a 3D render-
ing of the hand and ball trajectories around the post. The
short segment of the hand trajectories was described by the
marker on the thumb before ball release (blue).

To constrain the many ways of throwing the real ball, sub-
jects were instructed to stand at afixedposition in front of the
table and start each throw by holding the ball above amarked
position on the table (0 cm, �35 cm) until they were cued by
the experimenter to initiate a throw. As subjects tended to
first perform a backward movement preparing for the ball
release, the actual release position varied slightly across sub-
jects andblocks (seeFig. 4). Subjectswere instructed tohit the
target with the ball while keeping the string taut; given the
weight of the ball, this was almost always satisfied. Hitting
error was quantified by the minimum distance between the
center of theball and the center of the target; a throwwas clas-
sified as successful when the distance of the ball to the target
was smaller than the threshold of 1.77 cm, i.e., when the ball
(diameter 2.54 cm) contacted the target (diameter 1 cm). After
each throw, the subjects grasped the ball again and returned
to the same starting position, waiting for the next cue from
the experimenter.

Each subject practiced the virtual or the real task on three
successive days with 120 trials on each day. Each session was
parsed into four blocks of 30 throws, with a break of 1 min
between each block.
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Analysis of the ball trajectory in the real task.
To afford data analysis in comparable fashion in both virtual
and real skittles, the data from the real skittles task needed
more prior processing. Specifically, the 3D ball trajectory was
reduced to 2D to afford identical analysis of variability in
both the real and the virtual task.

As in the virtual set-up, the real ball trajectory was fully
determined by the position and velocity at the time of ball
release. To optimize the comparison of the two tasks, the 3D
kinematics of the ball was first projected onto 2D table plane,
similar to the virtual model task. In addition, the position of
the hand at ball release was, in principle, free to vary in two
dimensions, as the handmovements were not constrained to
the circular path of the manipulandum around the pivot.
However, to match the ball releases in the real and virtual
task, the experimenter specified the release position to the
subject with a point on the table. Although this location was
visible, subjects still had some leeway as to when and where
to release the ball. Figure 4, A and B shows the release posi-
tions of the eight subjects at the beginning (Block 1) and end

of practice (Block 12). Each subject’s ball releases are indi-
cated by a confidence ellipse calculated for all trials in a
block; as can be seen, they slightly varied between individu-
als and across blocks, but the size of the confidence ellipse
decreased with practice and attenuated variations (Fig. 4C).
As will be noted below, the different release positions cre-
ated small variations to the solution manifold. As illustrated
in the virtual task, xr and yr represented the release position,
hr was the release angle, and vr was the scalar value of the
tangential velocity at release (Fig. 2A). Again, to match
the two task scenarios and reduce the two variables to one,
the mean position of releases was determined and fixed
for each block of 30 trials. The equations of motion of the
ball in the horizontal plane were identical to those of the
virtual skittles model (Eq. 5–12).

To determine the moment of release from the motion cap-
ture data (note there was no thresholded force sensor on the
ball), the distance between the thumb marker and the ball
marker was calculated; the instant of release was determined
when the separation velocity of those two markers exceeded

Figure 4. Release positions in the real skittles task. A: distributions of release points for all eight subjects in Block 1; each ellipse represents the 68% con-
fidence region of 30 releases for one subject. B: confidence ellipses of release points of all eight subjects in Block 12. C: change of 68% confidence area
from Block 1 to Block 12, indicating that the release positions were increasingly better controlled following the instructions; the error bars represent
standard errors across subjects.

Figure 3. Experimental setup of the real skittles in the laboratory. A: the subject stood close to a table of regular height with the skittles game placed on
the table top. Nine reflective markers (represented by gray circles) were attached to the subject’s right arm, the top of the post, and the top of the target
skittle. The ball was also covered with reflective tape and identified as a marker. Twelve motion capture cameras recorded the three-dimensional posi-
tion of the markers. B: dimensions of the real skittles task. The red, yellow, and gray lines represent post, target, and string, respectively. Note that the
string was 1.5 cm longer than the post. This ensured that when the subject deflected the ball and string, the ball remained close to the table surface. This
facilitated the projection of the ball onto the two-dimensional surface in the analysis. C: exemplary hand and ball trajectories plotted in three-dimensional
space.
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0.30 cm/s for the first time. However, further adjustments
had to be made, as often the fingers accelerated the ball at
release. More details may be found in APPENDIX A.

To further match the two environments, the spring con-
stant k and the damping ratio c had to be determined for the
real task. To do so, the ball trajectories were generated for
each trial based on Eqs. 5–12 using the measured execution
variables; the simulations used different k and c values
sweeping through the ranges: k[[0.1,0.9] and c[[0,0.1]. Those
values of k and c were chosen that minimized the summed
Euclidian distance of the real trajectory and the simulated
trajectory. To avoid artifacts from the energy loss during the
ball-target collision, only the portions of ball trajectories
between ball release and target contact were considered.
Figure 5A shows three real and the three best-fitting tra-
jectories simulated with the optimal k and c values. The aver-
age Euclidean difference between the error in the real and
simulated ball trajectories was 0.34 cm, ranging between
0.12 and 0.57 cm. The estimated spring constants k of all
eight participants ranged from 6.4 g/cm to 6.8 g/cm, with an
average of 6.7 g/cm; the estimated damping ratios c ranged

from 0.001 to 0.01. Note that the damping ratio had only lit-
tle effect on the ball trajectory, as it was small and repre-
sented only one quarter of a full cycle around the post.
Figure 5B compares the distance errors calculated from 120
simulated and the real ball trajectories of one subject. This
simulation not only estimated the model parameters, but
also validated the 2D projected data from the real skittles.
Note that these calculations in the real set-up were per-
formed before the virtual experiment, and the estimated pa-
rameters were entered into the virtual model to achieve
maximum similarity.

Figure 6 shows 15 ball trajectories of two representative
subjects, one from the virtual group and one from the real
group, across day 1, day 2 and day 3. The 15 trajectories were
taken from the end of Block 2 of each day. As can be seen, in
both conditions, the 15 successive throws generate a bundle
with similar, yet variable, ball trajectories that traverse inside
and outside of the target. The release position on day 1 is visi-
bly different than on days 2 and 3 in both conditions.
Overall, the ball trajectories appear more variable in the vir-
tual condition. On the basis of these ball trajectories, the

Figure 5. Real and simulated ball trajecto-
ries and performance error of the real skit-
tles task. A: real and simulated trajectories
of three throws from an exemplary sub-
ject, based on the estimated ball release.
Coincidence of trajectories illustrate the
veridical estimates. B: calculated perform-
ance error with real and simulated ball tra-
jectory of 120 trials from the same subject.

Figure 6. Ball trajectories of two represen-
tative subjects in the virtual (top) and real
(bottom) tasks across the 3 days of prac-
tice. The blue curves represent 15 ball tra-
jectories from each day, the red circle is
the center post, the small yellow circle is
the target, and black dots are the release
point.
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descriptive performance measures error and success rate
could be calculated in analogous fashion for both the real
and virtual tasks.

Tolerance-noise-covariation analysis.
To provide a more fine-grained characterization of the
potential performance differences between the real and the
virtual skittles task, the variability in the redundant execu-
tion space was decomposed using the TNC-analysis. To track
how performance changed, the distribution of the variables
was parsed into three contributions or costs: tolerance,
noise, and covariation (Cohen and Sternad 2009). This anal-
ysis was conducted on each block of 30 trials. Figure 7 shows
performance of the same two subjects as in Fig. 6 from day 1,
day 2, and day 3, one subject for the virtual and one subject
for the real task; each point represents a single throw.
Calculation details for the TNC-costs are provided in
APPENDIX B, as this method was already applied in several
previous studies (Cohen and Sternad 2009; Sternad et al.
2010; Van Stan et al. 2017).

The color scale of the data points indicates trial number,
illustrating how the sequence of throws traversed through
the space on each practice day. After a large spread on day
1, especially in the virtual task, the data started to settle on
a location of the solution manifold on day 2. This traversal
in the solution space is captured by tolerance-cost. The
data in real skittles also show an alignment with the solu-
tion manifold, a feature that is quantified in covariation-
cost. Day 3 shows some further clustering and reducing of
noise, i.e., optimizing noise-cost, although this is not as
pronounced as other experiments revealed (Cohen and
Sternad 2009). Compared with these previous studies, the
practice time in the current experiment was relatively

short, and the reduction of noise and covariation tended
to occur in later stages of practice. Figure 6 shows the val-
ues of the three costs in each panel. For example, T-
cost = 7.3 cm means that the set of throws could improve
by 7.3 cm in accuracy if the data distribution had been
shifted to better overlap with the solution manifold (see
APPENDIX A).

Note that the solution manifolds in Fig. 7 are slightly dif-
ferent for the two tasks. This is because the real game
allowed some variation of the x-y hand position at ball
release, as the hand movements were not constrained to a
circular path. This release position affected the geometry of
the solution manifold. Therefore, the mean release position
was estimated for each practice block and used to create the
solution space for each block of trials separately. In addition,
the average k and c values were calculated per block as they
also changed slightly. These small variations of the parame-
ters modified the geometry of the execution space and the
solution manifold, as can be seen in Fig. 7. Specifically, the
solution manifolds in the real task tended to be further away
from the boundary that resulted in post hits (black area).

Note that, in principle, the TNC analysis could have been
performed on the full three-dimensional data of the real skit-
tles task with four execution variables, release position in x-
and y-dimensions, release angle, and release velocity.
However, the x-y coordinates of the release position were not
independent from the release angle, since the ball trajectory
was constrained to a circular arc by the pendular string. As
the release positions of each individual were relatively con-
sistent, the analysis could fix the mean release position and
reduce the execution variables to the same variables as in
the virtual task and, thereby, facilitate comparison across
the two tasks.

Figure 7. Solution spaces in the virtual (top) and real (bottom) task. The white color denotes the solution manifold; black denotes throws that hit the cen-
ter post. The data points from the same two subjects as in Fig. 6 are shown in each task. The color of the throws denotes the trial number, showing how
the throws change with respect to the solution manifold across practice. Note that the virtual and real task show slightly different geometries of the solu-
tion manifolds. For each panel, the values of the tolerance-noise-covariation costs are listed.

BACK TO REALITY: DIFFERENCES IN LEARNING STRATEGY

50 J Neurophysiol � doi:10.1152/jn.00197.2020 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at (071.190.252.180) on January 27, 2021.

http://www.jn.org


Statistical analyses.
First descriptive metrics were error, variability of error, and
success rate. Since the distributions of performance error
were skewed and leptokurtic, the median and interquartile
range (IQR) of the performance error were used to character-
ize the first and second moment of the error. Success rate,
median of error, and IQR of error were obtained for each sub-
ject per block. Note that by definition, for each error, the ball
trajectory, i.e., the execution variables, could be different.
The dispersion of error is not equivalent to the dispersion of
the ball trajectories. However, the error and its dispersion
determined the degree of accomplishment of the task, and it
was, therefore, a meaningful metric. Because of this redun-
dancy, the calculation of the TNC costs extracted different
features of performance. Noise cost may be closest to the
conventional variability metric.

To characterize how performance changed with practice,
all dependent measures were submitted to a repeated-meas-
ures 2 (group) � 12 (block) ANOVAs, with practice Block as a
within-subject factor and Group as a between-subject factor.
Greenhouse-Geisser corrections were applied to the within-
subject effect when the sphericity assumption was violated
(Kirk 1982). Since the sample size of the experiment was rela-
tively small (8 participants in each group), a bootstrapping
method was also applied. To simulate the process of a two-
factor repeated-measures ANOVA, all data of 12 blocks from
all subjects were first pooled. Second, 12 levels of data were
randomly sampled with replacement (creating blocks of
data). Third, two data sets of eight subjects were randomly
sampled with replacement (creating a real vs. a virtual
group). Fourth, a repeated-measures 2 (group) � 12 (block)
ANOVA was conducted on these sampled groups and the F
values were calculated. Fifth, steps 1–4 were repeated
1,000,000 times to create a distribution of F values. Sixth,
the F values from the repeated-measures ANOVA of the
actual observed groups were compared with the distribution
of F values from the bootstrapped data sets. The P value was
calculated as the ratio of the number of samples from the
bootstrapped F distribution that exceeded the observed F
value divided by the total bootstrap number (1,000,000).

Further, planned comparisons using two-sample t tests
between the virtual and real groups on each block were
applied on success rate, error, and IQR of error. To do so,
another bootstrapping method was applied. For each block,
all 16 subjects were pooled, and two sets of eight subjects’
data were randomly sampled without replacement. The dif-
ferences between themeans of two data sets were calculated.
This process was repeated 1,000,000 times to obtain a distri-
bution of differences between the means. The P value was
determined as the ratio between the number of values from
the bootstrapped mean differences that exceeded the
observed mean difference divided by the total bootstrap
number. Pearson correlations were computed between the
performance error and each TNC-cost for each individual.

Supplemental data are available at https://doi.org/
10.6084/m9.figshare.12100761.

RESULTS
Two groups of subjects performed the virtual and real

throwing task, which entailed throwing a ball suspended

from a vertical post like a pendulum and aiming it to hit a
target on the other side of the post. Each subject performed 3
days of practice with 4 blocks of 30 throws each day.
Performance and learning were evaluated with descriptive
error and success metrics and with a decomposition of vari-
ability that affordedmore insight into the learning process.

Success rate, error and variability of error.
The performance metrics, success rate, mean performance
error, and the interquartile range (IQR) of error of all subjects
across the 12 blocks are shown in Fig. 8. The plots show aver-
ages and standard errors across subjects for each block,
together with the individual data (in more transparent
lines). The first repeated-measures 2 � 12 ANOVA on suc-
cess rate revealed a significant main effect of Block,
F(5.39,75.45) = 10.40, which was also significant with boot-
strapping P < 0.001, showing that both groups improved
with practice. However, the real group’s performance was
significantly better overall, F(1, 14) = 10.55, with P = 0.008

Figure 8. Performance in the real and virtual skittles task. A: average suc-
cess rates across all subjects per block in the real and virtual skittles
across 12 blocks of practice. Asterisks denote significant differences
between virtual and real blocks. B: average performance error of the real
and virtual skittles decreased across 12 blocks of practice. C: interquartile
range of error of the real and virtual skittles decreased with practice. Error
bars represent standard errors across subjects. The solid lines represent
the means and the errors of the standard deviations across subjects. The
transparent lines show all eight subjects.
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using bootstrapping: the success rates in the real task
increased from 31.67%±4.50% in Block 1 to 60.00%±4.08% in
Block 12, while in the virtual task only from 17.08%±4.65% to
48.75%±3.88%. There was no significant interaction; boot-
strapping rendered P = 0.92. Figure 8A shows this clear separa-
tion between the virtual and the real group across all practice
sessions, although pairwise significant differences were only
identified inBlocks 1, 3, 5, 7 and 8, as indicated by an asterisk.

The same ANOVA on error revealed a significant interac-
tion between Group and Block, F(2.10,29.39) =4.36, with P <
0.001 when using bootstrapping. The real group decreased
the error from 3.1 ±0.4 cm in Block 1 to 1.5 ±0.1 cm in Block
12, while subjects in the virtual group started with higher
errors: 6.6 ± 1.1 cm and decreased them to the same approxi-
mate level as the real group in Block 12 with 1.9±0.2 cm.
Planned pairwise tests for each Block detected significant
differences in Blocks 1, 3, 5, 7, and 8. The main effect of Block
was also significant, F(2.10,29.39) = 15.79, with P < 0.001
when using bootstrapping, showing that both groups
decreased their errors (Fig. 7B). The significant effect of
Group, F(1,14) = 17.42, with P = 0.001 when using bootstrap-
ping, showed again the advantage of the real group: their
errors decreased from 3.1 ±0.4 cm in Block 1 to 1.5 ±0.1 cm in
Block 12, while subjects in the virtual group started with
higher errors: 6.6± 1.1 cm and decreased them to approxi-
mate the real group in Block 12with 1.9 ±0.2 cm.

The ANOVA on the variability of errors, or IQR, again ren-
dered a significant main effect of Block, F(3.35,46.92)= 14.02,
with P < 0.001 when using bootstrapping; the IQR of the real
group decreased from 3.8±0.5 cm to 1.5 ±0.1 cm, while the
virtual group started much higher and decreased from
6.5 ±0.8 cm to 2.3±0.2 cm. There was also a significant main
effect of Group, P = 0.001, providing evidence that the real
group had consistently smaller variability than the virtual
group. There was no interaction between Block and Group, P
= 0.082 with bootstrapping. Planned comparisons identified
significant differences in Blocks 1, 4, 5, 6, 7, 9, 11 and 12.

While all three performance measures revealed differen-
ces, the advantage of the real set-up manifested most pro-
nouncedly in the variability measures. This motivated
further analyses of thedistributions of thedata in eachblock.

Variability analysis: tolerance, noise, and covariation.
T-cost, N-cost, and C-cost were estimated from the distribu-
tions of the 30 trials of each block in the solution space, sepa-
rately for each subject. Showing all 16 subjects, Fig. 9, top,
shows 8 subjects in the virtual task, and Fig. 9, bottom, shows
8 subjects in the real task. Each panel shows one subject with
trials from Block 1 (denoted with red dots) and trials from
Block 12 (denoted with blue dots). The values in the bottom
right corner are the average error of each block. All virtual
subjects started their performance with a larger variability
andwith release angles closer to 0�, which corresponded to hr
in Fig. 2A. In Block 12, the trials were more clustered around
the solution manifold and were associated with smaller
errors. In the real task, the individuals showed larger individ-
ual differences in how performance was improved. However,
inBlock 12, all subjectsdisplayedvery tightly clustered throws
close to the solutionmanifold. Note that their solutionmani-
fold differed from the virtual task and also slightly between
each other, although not very much. One noticeable

difference is that the solution manifold has a second branch
on the left, potentially allowingmore throwingpossibilities.

Figure 10, A and B show the average costs of each of the
three components for the 12 blocks, both in the virtual and
real task. The mean values across subjects and its standard
errors are plotted across blocks. In the virtual task, T-cost
declined with practice, while N-cost and C-cost remained
at a relatively steady level throughout practice. T-cost was
initially high, reflecting initial exploration until the right
release variables were found. After Block 2 or 3, however, T-
cost dropped to a floor value without much further reduc-
tion for the remainder of practice. While unchanging, N-
cost was consistently higher than C-cost. After the initial
drop of T-cost, N-cost made a slightly higher contribution
to the performance error. In contrast, in the real task, the
three costs declined in parallel throughout the blocks. T-
cost made the lowest contribution, and again, N-cost was
consistently higher than C-cost. Note that the y-axis range
was adjusted to highlight the differential contributions of
the costs in the real task, which would have been invisible
when applying the same axis as in the virtual task.

One way to compare the different contributions of the
three costs was to examine the rank ordering of the three
costs in each block for each individual. Figure 10, C–F sum-
marizes these rank orders across blocks: the numbers of sub-
jects for which a given cost had the largest contribution
(rank 1) are shown in Fig. 10, C and D for the virtual and the
real task, respectively; the numbers of subjects for which a
given cost made the least contribution (rank 3) are shown in
Fig. 10, E and F. Comparing the relative numbers for rank 1
revealed some similarity. In the virtual task, in 6 out of 8 sub-
jects T-cost (denoted in blue) was highest in Block 1; from
Block 3 to Block 12, N-cost (denoted in red) became the larg-
est contributor; C-cost contributed very rarely, indicating
that subjects did not optimize covariation. In the real task, T-
cost was visibly less pronounced, and N-cost always had the
highest numbers of rank 1. When examining rank 3, the low-
est contributions to performance, C-cost and T-cost, were
equally represented in the virtual group. In the real group, T-
cost made the smallest contribution to the performance error
from the beginning of practice, implying that exploration
played a subordinate role.

In another comparison, the three costs were contrasted in
pairwise fashion to identify differences in strategies in the vir-
tual andreal task (Fig. 11).Three two-wayANOVAswereapplied
on the three costs. T-cost resulted in a significant effect of
Block, F(2.60,36.45)= 11.03, P < 0.001 with bootstrapping, and
Group, F(1,14) = 7.65, P = 0.014 with bootstrapping,
with a significant interaction between Group and Block, F
(2.60,36.45) = 3.79, P = 0.008 with bootstrapping. These
results signified that T-cost decreased with practice in both
groups, but the virtual group started with a higher error.
Neither N-cost nor C-cost showed any significant improve-
ments with practice, or differences between groups. In
summary, the comparisons of the three components
revealed that the different performance errors of the two
groups were caused by differences in T-costs. Note for
direct comparison the y-axes are now identical (even
though one data point was lost for the T-costfigure).

To further quantify the contribution of the three costs to
performance improvement in each individual, Pearson
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correlations between error and T-, N-, and C-cost were per-
formed for each subject across 12 blocks, respectively. The
results are summarized in Table 1. In both groups, T-cost
showed highly significant positive correlations with error in
most individuals. However, in the real task only, 4 out of 8
subjects also showed positive correlations in N-cost and C-
cost. These results indicate that while T-cost mainly drove
the performance improvement in both conditions, the real
task also allowed for noise reduction and covariation, N-cost,
and C-cost, to add to improvements.

DISCUSSION
Over the past few decades, numerous studies in move-

ment neuroscience and in physical therapy have employed

virtual reality set-ups as they allow sophisticated manipula-
tions and measurements that were impossible in real test-
beds. In parallel, physical therapy has adopted virtual reality
as a means to deliver motivating games that allow quantita-
tive measures of performance, multisensory feedback, and
individualized challenges in salient and enriched environ-
ments (Levac et al. 2019; Levin et al. 2015; Saposnik and
Levin 2011). However, the evident expectation that the
skills acquired during virtual rehabilitation transfer to
the real environment has not found much support
(Anglin et al. 2017; de Mello Monteiro et al. 2014; Levac et
al. 2019; Quadrado et al. 2019). These results raised the
concern that movements in a virtual world may not faith-
fully represent determinants of movements in the real
world.

Figure 9. Exemplary results from all 16 subjects in the virtual and real tasks. Top: subject 1 to subject 8 in the virtual task. Bottom: subject 9 to subject 16
in the real task. For each subject, the 30 throws on Block 1 are shown in red, and the 30 throws of Block 12 are shown in blue. The values of average per-
formance error are listed in the bottom right corner of each panel. As to be expected, the real throwing performance shows more differences in strategy
between subjects that, on the whole, all lead to better performance.
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Similarly, motor neuroscience has embraced virtual envi-
ronments, but with a different goal: Virtual testbeds reduce
the complex behavior and can isolate and tailor movements
to address a scientific question. Numerous studies on

reaching in the horizontal plane have studied adaptations to
visuo-motor rotations and perturbing force-fields and have
revealed detailed results on error correction, generalization,
and time scales of learning (Shadmehr and Mussa-Ivaldi

Figure 11. Pairwise comparison of T-cost, N-cost, and C-cost in real and virtual environments. The three panels showmean T-costs (left), N-costs (middle),
and C-costs (right) across 12 practice blocks for the real and virtual tasks, respectively; the error bars are standard errors across subjects. For direct com-
parison, the y-axes for all three costs are identical, even though one data point was cut off for the T-cost panel (see Fig. 10).

Figure 10. Results of the tolerance-noise-covariation analy-
sis. A and B: T-cost, N-cost, and C-cost in the real and virtual
tasks; error bars indicate standard errors across subjects.
Note that the y-axes are different for the real and virtual task
for better visibility. C and D: rank orders of the three costs in
the 12 blocks of practice. Number of subjects for each cost
that made the greatest contribution to error (rank 1). E and F:
rank orders of the three costs in the 12 blocks of practice.
Number of subjects for each cost that made the smallest
contribution to error.
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1994; Shadmehr et al. 2010). However, it needs to be noted
that the limb movements were reduced to two or maxi-
mally three joints moving in the horizontal plane with min-
imal friction from the surface. The visual workspace
presented a point target together with a cursor represent-
ing the end-effector movements against an empty 2D back-
ground. The task is void of any contact with an object. How
does this virtual aiming relate to realistic functional behav-
ior? Importantly, do the results in this virtual assay “add
up” or “scale up” to understand real behavior in its full
complexity?

While experimental reduction as a scientific method
should not be called into doubt, these questions, neverthe-
less, deserve more attention. With this concern in mind,
the present study examined a throwing task both in a vir-
tual and a real environment. While the arm, hand, and fin-
ger movements differed in several ways, the physical
parameters of the task were matched as exactly as possi-
ble. Do observations in the reduced virtual paradigm
match those in a more realistic context? Our findings
showed clearly that the performance outcomes were sig-
nificantly better in the real task, at least on the first 2 days
of practice. The success rate was better, the errors were
lower and, most clearly, the variability was less in 8 out of
12 blocks. To go beyond these descriptive outcome meas-
ures, this study also examined changes in variability, spe-
cifically using a decomposition method developed by our
group (Cohen and Sternad 2009). Significant differences
emerged that provided more insight how strategies dif-
fered between the two testbeds.
Estimation of release variables in real throwing.
Before further discussion, the difficulties of estimating the
variables at ball release in real throwing need to be high-
lighted. Real throwing affords subtle adjustments in finger
forces and stiffness when throwing a ball (Hore and Watts
2011). Therefore, several previous studies on naturalistic

throwing, could not estimate the release variables as accu-
rately and reliably as desired. For example, in a study on
dart throwing, simplified to the sagittal plane, the meas-
ured position of the dart at the target board differed from
the one simulated with the release variables by up to 20 cm
(Smeets et al. 2002). This was five times the actual error dis-
persion and the actual and simulated target position only had
a correlation coefficient between 0.6 and 0.9. These devia-
tions were not only introduced by environmental parameters,
but probably by inaccuracies in measuring the dart release.
Similarly, the dart throwing simulation by Nasu et al. (2014)
had an estimation error of 18.5 mm at the target, which was
about two times of the diameter of the bull’s eye. The authors
applied different velocity thresholds to detect the release for
each individual, but the criteria could not be firmly estab-
lished. The interaction forces between the fingers and the pro-
jectile are difficult to measure and have been largely
neglected in these experimental estimates. As detailed in
APPENDIX A, the present study developed methods to improve
the estimation accuracy of the time of ball release and the val-
ues of the release variables.

Virtual task requires more exploration.
The most striking result is that performance started with
much higher errors in the virtual task and decreased slowly
to reach the same level as the real task, but only after 3 days.
The variability analysis revealed that tolerance-cost started
much higher in the real task, while in the virtual task it
started with similar values as noise- and covariation-costs.
To reiterate, tolerance-cost quantifies how much the average
error could have improved if the data distribution were
translated to another location in solution space, without any
other transformation. Hence, tolerance-cost evaluates to
what degree the data distribution is not at the most error-tol-
erant area and still explores the solution space. Arguably, ex-
ploration, the early stage of learning, is a “mapping out” of
the result space. Several studies have focused on this first
stage of the learning process (Button et al. 2008; Goodman et
al. 2004; Ivaldi et al. 2014; McDonald et al. 1995; Wilson et al.
2014). For example, Wu and colleagues presented data that
suggested that the initial variability determined individual
learning rates, although several subsequent studies could
not replicate this result (Cardis et al. 2018; He et al. 2016;
Singh et al. 2016; Sternad 2018; Wu et al. 2014). Wilson et al.
(2016) have provided evidence for both a directed search
and a chance-based gathering of information. However,
endeavors to disentangle the different exploration strat-
egies based on random noise or directed gradient descent
were typically hamstrung by the fact that the result space
had to be known. In fact, the virtual task has been devel-
oped with the goal to allow this mathematical analysis of
the solution space. It then facilitated the task-based analy-
sis with the TNC-decomposition to provide an inroad to
quantify exploration by the tolerance-cost. Note that
related variability decomposition methods, the uncon-
trolled manifold (or UCM) analysis and the GEM analysis
only focus on the covariation and noise components and
do not capture the translations across the solution space
(Cusumano and Cesari 2006; Latash et al. 2002; Sternad
2018); for a comparative summary, see M€uller and Sternad
(2009) and Sternad et al. (2010).

Table 1. Pearson correlation between performance error
and T-, N-, and C-costs for all 16 subjects

Subject

T-cost N-cost C-cost

r Sig r Sig r Sig

Virtual 1 0.985 *** �0.380 0.087
2 0.950 *** �0.561 �0.159
3 0.975 *** 0.141 0.278
4 0.995 *** �0.357 �0.161
5 0.995 *** �0.483 �0.294
6 0.845 *** 0.338 0.265
7 0.980 *** �0.051 �0.001
8 0.794 ** 0.298 0.157
Mean 0.940 �0.132 0.022
Std 0.077 0.360 0.212

Real 9 0.827 ** 0.685 * 0.594 *
10 0.732 ** 0.052 0.260
11 0.788 ** �0.002 0.096
12 0.792 ** 0.655 * 0.927 ***
13 0.889 *** 0.797 ** 0.572
14 0.635 * 0.579 * 0.107
15 0.836 ** 0.493 0.612 *
16 0.181 �0.003 0.787 **
Mean 0.710 0.407 0.494
Std 0.227 0.336 0.308

The asterisks represent the level of significance: *0.01 < P <
0.05, **0.001 < P < 0.01, ***P < 0.001.
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Returning to the comparison between the real and the vir-
tual task, covariation-cost and noise-cost were lower and
declined very slowly. It is further worth noting that also
covariation-cost and noise-cost showed significant correla-
tions with performance error in the real skittles, while in the
virtual skittles, none of the subjects gave any indication that
these components mattered. As seen in previous studies on
the same task, but with longer practice, covariation did
become a significant contributor to performance improve-
ments, but only much later in practice (Abe and Sternad
2013; Cohen and Sternad 2009; Van Stan et al. 2017). Noise
has been the hardest component to reduce, and many days
of practice or additional interventions are needed (Hasson et
al. 2016; Huber et al. 2016).

The notion that learning proceeds in stages is not new in
learning theory, and several other proposals have beenmade
(Bernstein 1967; Posner et al. 2004). A number of studies
have pointed out that learning of a given task is not a single
process but involves a complex system with more than one
timescale. Wenderoth and Bock (2001) showed multiple
timescales in a bimanual rhythmic task, similar to work by
Park and colleagues (Park et al. 2013; Park and Sternad 2015).
These studies extracted different task-relevant metrics that
all showed a different time course of improvement across
practice. In contrast, Smith et al. used a single behavioral
variable but showed that by including a second timescale in
the iterative learning model, they could account for observa-
tions, such as savings (Smith et al. 2006). The TNC analysis
may offer another analysis tool that can differentiate differ-
ent stages and strategies based on the type of changes in
variability.

Differences between the real and the virtual task.
As emphasized in the methods, the physical parameters of
the two tasks were identical, but there were several differen-
ces in terms of movement execution and the perceived envi-
ronment. To start with the obvious, the real set-up was in
three dimensions, where depth perception was required—or
helped—to see and aim for the target. In the virtual task, sub-
jects saw a bird’s-eye 2D view of the taskwithout perspectival
distortion, with all the objects represented by circles of dif-
ferent colors and diameters. In the real task, the feedback
about throwing accuracy was a real collision between the
ball and target, whereas in the virtual set-up, a color change
of the target signaled success. However, subjects had a clear
view of the distance between ball trajectory and virtual
target.

Importantly, the movements differed in several aspects: in
the virtual set-up, the forearm was constrained to the circu-
lar path around the pivot. In contrast, in the real task, sub-
jects used their entire arm with all joint degrees of freedom.
Nevertheless, the hand trajectory was also constrained to a
circular path around the post before ball release as the pen-
dulum string had to remain taut. Finally, the ball release in
real throwing required fine-grained coordination between
the fingers, including complex interaction forces between
the fingers and the ball, while in the virtual task, a simple
extension of the index finger was sufficient to release the vir-
tual ball. The complex finger-ball forces were detailed by
Hore et al., who concluded that skilled throwers modulate
their finger stiffness based on an internal model of the

interaction forces to determine the release velocity (Hore et
al. 1999; Timmann et al. 1999). Note that it was not our objec-
tive to equate the arm movements in the real and virtual
tasks. We only strove to equalize only the tasks to evaluate
the effect of the reductions or simplifications of the move-
ments. So why is real throwing with all its complexity still
more accurate? Several reasons may account for the
observed advantage.

Redundancy of multi-joint coordination may help.
Because of the less constrained arm movements, subjects
may have exploited the redundancy of the multijoint arm to
better adjust the position and velocity of the hand at ball
release. Further, the redundancy in hand-finger joints may
also have afforded fine-grained adjustments of their hand
and finger coordination to throw the ball. Following Hore et
al., subjects may have included finger stiffness to fine-tune
the ball throw (Hore and Watts 2011). While from a scientific
perspective, controlling the complex arm, hand and finger
may appear more challenging, awareness of the null space of
the arm and hand may be acquired from everyday experi-
ence. Even though people have more experience in real
throwing, anecdotal and scientific evidence provides
ample documentation that throwing is not easy. The
results suggest that operating in a virtual environment
may even be more demanding and may need more explo-
ration and familiarization.

Geometry of the solution manifold.
A seemingly subtle but interesting point is that in the real
task, the solution space is not completely fixed. The geome-
try of the solutionmanifold is determined by two factors: the
location of the target and the location of ball release. In the
virtual task, the hand trajectory was strictly confined to
the circular arc with its pivot fixed; hence, the geometry
of the solution space was fixed. The subject could only adjust
the velocity profile of the hand trajectory and, of course, the
moment of release. In contrast, in real throwing the subject’s
hand trajectory was confined to an arc around the center
post, as they held the ball attached to a string that needed to
be taut. Even though subjects were instructed to release the
ball at a fixed position, they could and did adjust the ball
release position slightly. Figure 4 shows that even though
subjects were instructed to release the ball at a designated
position, they varied in their choice and some variability
remained within and between subjects. These seemingly
small positional adjustments shaped the solution mani-
fold as seen in Figs. 7 and 9, which show representative
data from real and virtual throwing with their respective
solution spaces. Despite the identical placement of the tar-
get with respect to the post and the designated position of
ball release, the solution manifold differed slightly. In par-
ticular, a left branch appeared creating potentially more
options for throws without hitting the post. A similar ob-
servation was reported in a study on realistic target-ori-
ented throwing by Wilson et al. (2016). The small
variations in release position might reflect that subjects
created this possibility to increase their success rate.
However, the results showed only one subject (S16-R)
actually used this branch and 3 subjects were close (S10-R,
S13-R, and S15-R). Although this raises an interesting issue
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of how subjects may shape their solution manifold when
they are free to choose the ball release location, the cur-
rent data seem to be relatively little influenced by it. To
directly address this question, subjects would need to be
instructed to find their preferred release position.

Summary and implications for research and
rehabilitation.
Virtual environments have found increasing use in research
and rehabilitation, although for different purposes. While
physical therapy has employed them as motivating games
that also enabled precise measurements and titration of task
difficulty, motor neuroscience has used them to create sim-
ple testbeds for addressing focused scientific questions,
while eliminating uncontrolled variability. This reductionis-
tic strategy parallels the modeling process that distills with-
out replicating the full system. In this spirit, many
experimental paradigms in motor neuroscience have “mod-
eled” real behaviors: reaching has been reduced to aiming in
the horizontal plane (Wang and Sainburg 2007), and grasp-
ing has been reduced to pressing on an object or holding an
object with precisely known physical properties (Zatsiorsky
and Latash 2008). Both paradigms are far from the complex-
ity of behaviors with natural objects. Also walking and run-
ning are typically examined on a treadmill to eliminate
uneven ground and changing velocity, and to facilitate re-
cording (Alton et al. 1998; Dingwell et al. 2001; Ochoa et al.
2017). Inevitably, all these experimental settings lose
something of the real world that could be important for
the scientific question. While this scientific approach is
widely accepted, the question still remains how the find-
ings relate to the task that gave rise to the model testbed:
be it reaching, grasping, walking, or throwing.

This study compared a real and virtual version of throw-
ing, where the task requirements were precisely matched,
but the movements remained different. The main and some-
what unexpected result was that hitting performance in the
real setting with a full arm and handmovements was signifi-
cantly better. Real throwing required a significantly shorter
learning period and earlier involvement of more fine-tuned
processes of covariation and noise reduction. Perhaps, vir-
tual learning tasks should consider longer practice sessions.
Further, despite the close match of the physical task parame-
ters, differences in movement execution engendered subtle
differences in the solution space that revealed potential
opportunities for control. This was not trivial as the more
complex, real environment seemed to pose more challenge
for movement control. It may be of interest to include this
aspect into the virtual setting and test its influence on
performance.

Given the widespread use of virtual environments in
motor neuroscience, these results raise some caveats for
the unreflected generalization of findings to complex real-
world actions. Virtual environments may present initial
hurdles, such that subjects do not find their best strategy
or, relevant for physical therapy, they do not practice, a
strategy that is transferable to activities of daily living. For
example, in unconstrained settings, skilled throwers may
not only align their trajectories with the solution mani-
fold, but also shape and exploit the geometry to fit their
preferences. Therefore, caution should be applied to basic

research on motor control: the results in simplified set-
tings may not scale up as expected. After all, the human
neuromotor system is a highly complex, nonlinear, hier-
archical system. Perhaps, despite all the recognized
advantages of reductionistic science, it is also worth
studying more complex behaviors.

APPENDIX A: DETERMINATION OF ANGLE AND
VELOCITY AT BALL RELEASE

Several previous studies examined real-life throwing with
similar research goals as this study and determined the exe-
cution variables of the hand at ball release (e.g., Nasu et al.
2014; Smeets et al. 2002). Despite interesting analyses and
results, these studies had to report significant differences in
the accuracy of the real ball trajectory and the ball trajectory
simulated with the estimated execution variables. Although
these discrepancies can be ascribed to air resistance, ball
spin, or deviations from the saggital plane, they also arise
from inaccuracies in determining the actual variables at
release that generated the ball trajectory. Given the detailed
analyses based on the relation between execution and result
variables, this is a critical factor for the reliability of the
results and conclusions. Unlike in the virtual set-up, where
the ball release variables are defined at the moment of ball
release, the ball trajectory in the real throw is also influenced
by the potential exchange of forces between the fingers and
the ball. In this study, we introduced a correction of the ki-
nematics when the ball trajectory was significantly modified
by finger forces.

The first step in the analysis of the ball release variables
was to determine the moment of release using the motion
capture data (note: there was no force sensor). Given that re-
flective markers were on both the ball and the thumb, the
relative distance and the velocity between these two
markers was the basis for calculation. The instant of release
was determined when the separation velocity of those two
markers exceeded 0.30 cm/s for the first time. This thresh-
old was empirically determined and held constant across all
subjects [note that individual adaptations had to be applied
in Nasu et al. (2014)]. However, the angle and velocity of the
ball at this moment were not necessarily the best predictor
for the ball trajectory.

Figure A1 illustrates the calculations for two ball trajecto-
ries in the x-y plane: one trajectory showed no marked
change in direction (left column); for the second trajectory
the fingers exerted forces to the ball at release such that the
ball trajectory made a sharp turn and increased its velocity
at release (right column). To begin, on the basis of the x-y
position at the release moment BRelease, two points 30 ms
before and after release, BBefore and BAfter, were determined
on the measured ball trajectory (black line in Fig. A1).
Connecting these two points (red dashed line) defined the
angle of release if no force were imparted onto the ball at
release. Figure A1A shows an example segment where angle
and velocity changed only negligibly and the solid and
dashed line were almost overlapping. Figure A1B illustrates
how the real trajectory could deviate markedly, leading to
erroneous release angle estimates. The solid red line illus-
trates the release angle and velocity by shifting the red
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dashed line to start atBRelease. To calculate the scalar velocity
of ball release, all samples between BBefore and BAfter were
examined to avoid the confounding effect of equipment
noise in the estimation. The Euclidian distances from
BRelease to all the points between BBefore and BAfter were deter-
mined and a regression of those distances over time gave the
scalar velocity of the ball at release.

The correction used an optimization approach, in which
the ball trajectory for each trial was simulated with differ-

ent release angles ehr and release velocities evr sweeping

through the ranges: ehr 2 hr � 28:6�;½ hr þ 28:6�� andevr 2 vr � 100 cm
s ; vr þ 100 cm

s

� �
, with 100 test values evenly

separated for each variable. The simulation error of each

pair of ehr and evr was determined as the average Euclidian
distance between the simulated and real trajectories from
the release to the point of minimum distance to the target.

The values of ehr and evr, which minimized the simulation
error, were chosen as the “veridical” release variables. For
subjects with small exerted force, as depicted in the left
column of Fig. A1, the angle and velocity corrections were

zero. In Fig. A1E, the simulation error was small: 0.15 cm.
For subjects with nonnegligible force as in the right col-
umn, a correction was applied. For instance, in Fig. A1F,
the correction reduced the average simulation errors for
this trajectory from 4.45 cm to 0.30 cm.

A summary of all corrections of angle, velocity, and errors
are presented in Fig. A2. The 8 subjects in the real group dis-
played different degrees of angle and velocity corrections
(Fig. A2, A and B). While 3 subjects had very small angle and
velocity corrections, there were 5 subjects who had nonne-
gligible errors compared with the original simulated trajec-
tories. After the corrections on angle and velocity, the
simulation errors significantly decreased (Fig. A2C).

APPENDIX B: TOLERANCE-NOISE-
COVARIATION ANALYSIS

This analysis was conducted in execution space, spanned by
release angle and velocity, where sets of 30 trials were ana-
lyzed with respect to their contribution to performance error

Figure A1. Estimation of release angle and velocity account-
ing for the force that fingers exerted on the ball. A: exem-
plary trajectory with negligible force at release in black; the
red dashed line between BBefore and BAfter determines the
angle of the ball at release. B: exemplary trajectory (black)
and release angle (red dashed line) with nonnegligible force
at release. As the release angle differed from the actual ball
trajectory, the red solid line shows the angle of release
translated to the actual location of release. C and D: real
and corrected ball angle and velocity at release as deter-
mined in A and B. E and F: real and corrected ball trajecto-
ries as in A and B shown in the x-y workspace; the yellow
dot is the target.
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(see also Cohen and Sternad 2009; Sternad et al. 2010).
Figure B1 illustrates the analysis with the distributions of
one block of trials on the 3 days of practice: the first col-
umn shows the operations for the estimation of tolerance-
cost, or T-cost, the second column shows noise-cost, or N-
cost, and the third column shows covariation-cost, or C-
cost. In each panel, the black data points represent the
veridical distributions of the 30 trials, and the colored data
points show the transformed data that optimize each cost
defined as follows.

Calculation of tolerance cost.
T-cost is the cost to overall performance for not being in the
most error-tolerant area of the execution space. T-cost was
estimated by generating an optimized data set in which the
mean release angle and the mean release velocity were
shifted in execution space to the location that yielded the
best overall mean error. The distribution along each axis
was preserved during this process. In the numerical proce-
dure, the center point of the distribution was identified as
the mean of the distribution of the x-axis (angle) and the y-
axis (velocity). The angles tested as centers were limited to
those between 0 and 180�; the velocity values tested as cen-
ters were limited to 50–400 cm/s. Then, the data set was
shifted on a grid of 1,500 � 1,500 possible center points. The
optimization procedure shifted the data set through every
possible center point and evaluated its mean result at each
location. When data points extended beyond the grid limits,
the values were calculated on the extended execution space.
The location that produced the best (lowest) mean error was
compared with the mean error of the actual data set; the
algebraic difference between the two mean error values
defined T-cost in units of centimeters. Figure B1 shows the
shifted data leading to the optimal result versus the actual
data.

Calculation of noise cost.
N-cost is the cost to overall performance due to nonopti-
mal stochastic dispersion in execution space. N-cost was
estimated by generating an optimal data set, in which the
observed variability was scaled to achieve the least possi-
ble mean error, while leaving the angle-velocity pairings
and overall mean unchanged. Although one would initially

expect all data sets to be optimally reduced to a single
point, note that each data set was evaluated in terms of its
result or error. Therefore, the mean of a data set would not
always fall directly on the solution space and were not
always optimal. In the numerical procedure, the radial dis-
tance of each data point of the distribution was deter-
mined and divided into 100 steps. Subsequently, all data
points were pulled toward the mean at 1% intervals and
the mean error was evaluated at each interval. The alge-
braic difference between the mean error evaluated for
each step and the actual mean error was calculated. The
scaling step that produced the lowest mean error was the
optimal data set; the algebraic difference of the mean error
between this transformed set and the original data set
defined N-cost. Figure B1 shows the optimal scaled distri-
bution denoted in red against the actual data denoted in
black.

Calculation of covariation cost.
C-cost is the overall cost to performance due to insufficient
alignment with the solution manifold; i.e., not exploiting
the redundancy in the execution space. C-cost was esti-
mated by generating an optimized data set, in which the
marginal distribution of the angle and velocity values were
not modified, but the individual trial-by-trial pairings
were recombined. Using a greedy hill climbing algorithm,
data were pairwise matched and the mean error for each
transformed data set was evaluated (Russell and Norvig
2002). Specifically, all angle-velocity pairs were rank-or-
dered from lowest error (best) to highest error (worst); i = 1,
2, 3, . . . 30, since all data sets comprised 30 trials.
Subsequently, the worst performing angle (i = 30) was
paired with velocity (i = 29), and velocity (i = 30) was paired
with angle (i = 29); the mean results of the new error for
i = 30 and i = 29 were compared with the original mean error
of the two trials. If the error improved over the original, the
swap was accepted. As a next step, angle (i=30) was swapped
with angle (i=28), and the resultingmean error of the two tri-
als was evaluated. If the mean result improved, the swap was
accepted. This continued until angle (i=30) was compared
with angle (i= 1); i.e., angle (i=30) was swapped with angle
(i= 1). After this sequence of 29 comparisons, the same
sequence was repeated with angle (i=99); therefore, the

Figure A2. Correction of execution varia-
bles for all subjects. Each colored line rep-
resents the mean correction of one
subject for each block. A: angle correction
for all subjects across blocks. B: velocity
correction for all subjects across blocks.
C: average simulation error with/without
angle and velocity correction.
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batch consisted of 29� 29=841 comparisons. The number of
profitable swaps was recorded for each batch, and the proce-
dures were repeated on the improved set until no further
swaps could be made. The algebraic difference between the
mean error of this optimized data set and the original data
set defined C-cost. Figure B1 shows the transformed data set
with the best covariation result denoted in green against the
actual data denoted in black.
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