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a b s t r a c t 

Background and objective: Preterm neonates are prone to episodes of apnea, bradycardia and hypoxia 

(ABH) that can lead to neurological morbidities or even death. There is broad interest in developing meth- 

ods for real-time prediction of ABH events to inform interventions that prevent or reduce their incidence 

and severity. Using advances in machine learning methods, this study develops an algorithm to predict 

ABH events. 

Methods: Following previous studies showing that respiratory instabilities are closely associated with 

bouts of movement, we present a modeling framework that can predict ABH events using both movement 

and cardio-respiratory features derived from routine clinical recordings. In 10 preterm infants, movement 

onsets and durations were estimated with a wavelet-based algorithm that quantified artifactual distor- 

tions of the photoplethysmogram signal. For prediction, cardio-respiratory features were created from 

time-delayed correlations of inter-beat and inter-breath intervals with past values; movement features 

were derived from time-delayed correlations with inter-breath intervals. Gaussian Mixture Models and 

Logistic Regression were used to develop predictive models of apneic events. Performance of the models 

was evaluated with ROC curves. 

Results: Performance of the prediction framework (mean AUC) was 0.77 ± 0.04 for 66 ABH events on 

training data from 7 infants. When grouped by the severity of the associated bradycardia during the ABH 

event, the framework was able to predict 83% and 75% of the most severe episodes in the 7-infant train- 

ing set and 3-infant test set, respectively. Notably, inclusion of movement features significantly improved 

the predictions compared with modeling with only cardio-respiratory signals. 

Conclusions: Our findings suggest that recordings of movement provide important information for pre- 

dicting ABH events in preterm infants, and can inform preemptive interventions designed to reduce the 

incidence and severity of ABH events. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Apnea of prematurity is defined as a respiratory pause for at 

east 20s or a pause shorter than 20s when accompanied by brady- 

ardia ( < 100 bpm), cyanosis, pallor and and/or marked hypoto- 

ia [1] . In practice, apneic events that fall short of these criteria 

ay also put the premature infant at risk. Preterm infants, born 

t a gestational age of < 37 weeks, are prone to apneic episodes 

ue to numerous factors. Amongst them is their low birth weight 

2] and the immaturity of their organs, including lungs, the respi- 
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atory controller and other structures in the brain [3] . This results 

n pathophysiological mechanisms such as increased inhibitory re- 

exes of breathing and hypoxia depressed ventilation [ 4 , 5 ]. Matu- 

ation with increasing post-menstrual age is associated with a re- 

uction in the incidence of apneic events [6] . 

Apneas are classified into central, obstructive and mixed types 

ased on respiratory effort and airflow [7] . Central apneas arise 

ue to damage or immaturity of the brainstem which is respon- 

ible for respiratory rhythm generation. This results in cessation 

f breathing due to lack of movement of the respiratory muscles 

n chest and abdomen. Obstructive apneas occur due to airflow 

bstruction at the pharyngeal level [ 8 , 9 ]. The cause of obstruc- 

ion can be due to a primary mechanical event, e.g., head and 

eck positional changes, or neural event, e.g., loss of neural drive 
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o the pharyngeal and laryngeal dilator muscles. In mixed apneas 

he obstruction of the airflow results in a central apneic pause, or 

ice versa. Mixed apneas are the most prevalent type in preterm 

nfants constituting more than 50% of all apneas [ 3 , 10 ]. Apneic

pisodes and the associated bradycardias and hypoxias (termed 

ABH events”) cause significant reduction in cerebral oxygenation, 

lood flow velocity, and tissue perfusion when bradycardias fall be- 

ow 80 bpm [ 11 , 12 ]. Such events put these infants at an increased

isk for brain injury and poor neurodevelopmental outcomes. Re- 

ardless of the specific type of apnea, prolonged and repetitive ap- 

eas are associated with neurological morbidity and mortality. 

ABH events are treated with methylxanthine drugs, such as caf- 

eine, theophylline and aminophylline that stimulate the central 

ervous system [ 13 , 14 ]. Premature infants are continuously mon- 

tored in neonatal intensive care units (NICU). Nurses and physi- 

ians respond to apneic, bradycardic and hypoxic alarms by man- 

al stimulation of the infant or, in severe cases, by placing the in- 

ant on a ventilator. Although manual stimulation is effective in re- 

ucing ABH [15] , its implementation is limited by risk of infection 

ue to increased manual contact by staff. NICU staff are often faced 

ith simultaneous apnea alarms across the unit, and there is con- 

ern that manual stimulation can transmit infections by contami- 

ation across infants due to inadequate time for staff to implement 

anitation procedures. 

Non-pharmacological treatment based on using a mattress that 

pplies stochastic vibrotactile stimulation (SVS) has been shown to 

educe the incidences of ABH events [ 16 , 17 ]. However, the mat-

ress needs to be actuated prior to onset of the event. Hence, 

his method is only effective in preventing, but not attenuating or 

borting the episodes. Mattress SVS can be automated in a closed- 

oop system, in which SVS is actuated during periods of high risk 

or apneas [18] . Therefore, it would be of high clinical significance 

f apneas could be predicted before they occurred, in order to ac- 

uate the SVS intervention. Another important benefit of predict- 

ng ABH events would be to provide nursing staff more time to 

erform required sanitation procedures such as hand washing and 

earing isolation gowns, to prevent cross-contamination between 

nfants. 

Many studies have developed models to detect apnea [19-23] , 

ut relatively little has been done in the prediction of apneic 

vents. Several methods used the prior knowledge of the distribu- 

ion of the RR-intervals of the ECG to predict bradycardia based 

n hierarchical classification methods [24] , point-process theory 

25] and decision trees [26] . Prediction based on nonparametric 

ernel-based probability density function has also been reported 

27] . Williamson and colleagues have proposed prediction of ap- 

ea based on cardio-respiratory signals using Quadratic Classifiers 

28] . A different study predicted apneic episodes using physiologi- 

al, demographical and medical information via support vector ma- 

hines and random forests [29] and deep neural networks [30] . All 

hese studies only used cardio-respiratory events for the prediction 

f bradycardias and apneas. However, there is evidence that bod- 

ly movements are correlated with apnea occurrences [31-33] . Our 

revious work has provided quantitative evidence that respiratory 

ariability and apneas are closely associated with movements [34] . 

he aim of this study extends from this result and uses features 

rom movement along with cardio-respiratory intervals to predict 

BH events. 

A previous preliminary study of our group used movement fea- 

ures inferred from Fourier transform of the PPG signal to pre- 

ict apneas in 6 subjects, using a Gaussian Mixture Model (GMM) 

35] . In the study reported here, we extend elements of this pre- 

ious approach by: 1) including a larger number of subjects; 2) 

nalysing the onsets and durations of movement with greater tem- 

oral resolution using a wavelet-based algorithm of the PPG sig- 

al [36] ; 3) demonstrating the benefits of including movement- 
2 
ased features in a machine learning framework for prediction of 

BH events. Briefly, cardiorespiratory features for predictions were 

reated based on time-delayed correlations of log-transformed in- 

erbeat and interbreath intervals with past values. Movement fea- 

ures were obtained by considering its influence on inter-breath in- 

ervals using time-delayed correlations. The classification approach 

ombined unsupervised (GMMs) and supervised (Logistic Regres- 

ion) machine learning methods. Our study also demonstrated the 

se of stratified k-fold cross-validation to resolve the imbalance 

etween different classes representing physiological states relative 

o ABH events. Performance evaluation based on ROC curves was 

sed for evaluating model performance. This framework was able 

o predict 75% of the most severe episodes. Notably, inclusion of 

ovement features significantly improved the predictions com- 

ared with modeling only cardio-respiratory signals. Our findings 

uggest that recordings of movement provide important predictive 

nformation for ABH events in preterm infants, and can inform pre- 

mptive interventions designed to reduce the incidence and sever- 

ty of ABH events. 

. Methods 

.1. Subjects and ethical approval 

The study protocol was approved by the University of Mas- 

achusetts’s Medical School Institutional Review Board for Human 

ubjects. Ten preterm infants were studied at the University of 

assachusetts Memorial Healthcare NICU. All infants were spon- 

aneously breathing room air. Infants with hydrocephalus, intra- 

entricular hemorrhage higher than grade 2, congenital defects 

r bronchopulmonary disease were excluded. Eligible infants were 

dentified to the investigators by the attending neonatologist. Writ- 

en informed consent was obtained from the infant’s mother or le- 

al guardian prior to enrollment in the study. 

.2. Data acquisition and pre-processing 

All subjects were studied in their NICU incubator with a bed- 

ide monitor (IntelliVue MP70, Philips Medical Systems, Andover, 

A), which displayed electrocardiogram (ECG) and photoplethys- 

ogram (PPG) waveforms along with numeric vitals such as blood 

xygen saturation (Sp0 2 %), heart rate and respiration rate. ECG 

as recorded using electrodes placed on the infant’s chest in a 3- 

ead configuration. The PPG signal was acquired from the infant’s 

and or foot using a pulse oximeter probe (Masimo SET LNCS Neo, 

asimo, Irvine, CA). Abdominal respiratory movements (pneumo- 

ram) were recorded using respiratory inductance plethysmogra- 

hy (Somnostar PT, Viasys Healthcare, Yorbalinda, CA) via bands 

laced around the abdomen. A video camera, placed in one cor- 

er of the incubator, continuously monitored the infant (resolu- 

ion: 320 × 240 pixels, Edmund Optics, Barrington, NJ). Data were 

ecorded using the Vuelogger TM Patient Monitoring System (Wyss 

nstitute, Boston, MA), which retrieved physiological information 

rom the bedside monitors and time-synced them with signals 

rom the pneumography system and the video. The signals were 

ampled at the following rates: ECG: 500Hz; pneumogram: 50Hz; 

PG: 125Hz; video: 10fps. The data were streamed to the Vuelog- 

er’s hard disk at the bedside and were subsequently exported for 

nalysis. 

During movement the PPG signal showed distortions, i.e., arti- 

actual events in the PPG signal, that are distinct from the pul- 

atile signal related to perfusion. A wavelet-based algorithm de- 

eloped previously was used to estimate gross body movements 

y identifying the onset and offset of these disruptions [36] . A bi- 

ary marker sampled at 25Hz was thus obtained indicating the 

resence or absence of movement. The movement marker together 



I. Zuzarte, D. Sternad and D. Paydarfar Computer Methods and Programs in Biomedicine 209 (2021) 106321 

Fig. 1. Raw signals of respiratory activity, ECG, SPO 2 and PPG. Binary markers of movements were derived from the PPG signal. Apneas and the associated bradycardias and 

oxygen desaturation are highlighted. 

Table 1 

Subject and study characteristics. GA: Gestional age of the infant at birth, PMA: Post-menstrual age of the infant at the time of study. 

Sub ID GA (weeks) PMA (weeks) Study weight (g) Total study time (hr) Excluded time(hr) Total analyzable time(hr) Inter-apnea frames Pre-apnea frames 

1 30.57 30.71 1755 43.54 22.16 21.38 161 10 

2 29.43 30.14 843 44.15 8.15 36.00 283 5 

3 31.29 32.29 1674 46.78 19.15 27.63 209 12 

4 28.86 30.14 1140 48.00 16.63 31.38 245 6 

5 28.57 30.14 1110 19.40 6.52 12.88 99 4 

6 30.29 30.57 1230 70.16 26.79 43.38 328 19 

7 29.57 31.57 1480 23.87 12.75 11.13 79 10 

8 27.29 29.43 1220 43.24 25.54 17.69 167 26 

9 30.14 30.71 1710 40.92 22.13 18.79 193 12 

10 33.86 34.29 1900 41.42 20.33 21.08 227 3 
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ith raw cardio-respiratory signals is illustrated in Fig. 1 . R-R in- 

ervals (RRI) were extracted from the ECG signals using a mod- 

fied Pan–Tompkins algorithm. Inter-breath intervals (IBIs) were 

xtracted from the pneumogram using automated peak-detection 

oftware (LabChart 7, ADI Instruments, Colorado Springs, CO). 

Data during periods of nurse/caregiver interventions and inter- 

als that were contaminated by technical interruptions, such as 

isconnection of sensors, were excluded from analyses. The to- 

al excluded times for each subject and the study durations are 

isted in Table 1 . The remaining RRI and IBI values were first in-

erpolated at 10Hz. The feature engineering methods described in 

ection 2.4 are based on correlations between the interval time 

eries; normality of their distribution was assumed. Since the IBI 

nd RRI signals followed a log-normal distribution, they were log- 

ransformed to make the intervals approximately normal ( Fig. 2 ). 

.3. Problem definition 

Apnea of prematurity has been defined as a pause in breathing 

or at least 20s or between 10-20s, if accompanied by bradycardia, 

xygen desaturation or cyanosis in infants [1] . Bradycardia was de- 

ned when the heart rate dropped below 100bpm and persisted 

or at least 3 heart beats. Oxygen desaturation was defined as SpO 2 

 88%. This definition was used to automatically label apneic/ABH 

vents in our datasets. The onset of apneic pauses > 10s was con- 

idered as the last respiratory peak before the pause. For events 

here bradycardia and desaturation occurred simultaneously, the 

nset of apnea was defined at 20s prior to their first point of co- 

ccurrence, or the onset of the associated apneic pause, whichever 

ccurred earlier. Apneic offsets were defined as the end of the ap- 

eic pause or the time point where both heart rate and SpO were 
2 

3 
bove their thresholds, whichever occurred later. Fig. 1 illustrates 

n example of an apnea along with the associated bradycardia and 

xygen desaturation. 

The goal of apnea prediction was motivated by preliminary 

ork by our group [ 28 , 35 ], based on an analytical framework that

egmented data into apnea, pre-apnea and inter-apnea blocks. Ap- 

eas could be predicted by an algorithm that distinguished be- 

ween pre-apnea (segments of data before an apneic onset) and 

nter-apnea periods (segments of data before the pre-apnea pe- 

iod). Detection of a pre-apnea period would therefore constitute 

he prediction of an upcoming apnea. Pre-apnea periods were cho- 

en to be of length 7.5min immediately preceding an apneic on- 

et. Post-apnea periods were chosen as the 7.5min-segment from 

he end of the all apnea labels. Since apneas tend to be clustered 

n time, predicting the first apnea in a cluster is of great clin- 

cal importance. This is critical since features obtained from the 

RI and IBI time series change significantly after an apneic onset. 

f another apnea occurred within 7.5min of the first apnea onset, 

hey were assigned to the same cluster without any pre-apnea seg- 

ents. Inter-apnea periods were considered as all the remaining 

ime points in the dataset. They were further divided into smaller 

on-overlapping segments of 7.5min to match the length of the 

re-apnea segments. Apnea and post-apnea periods were not used 

n generating the prediction models. 

A schematic representation of the apnea, pre-apnea, inter-apnea 

nd apnea blocks obtained from 6 hours of data is shown in Fig. 3 .

ingle apneic events are in black, whereas the yellow blocks con- 

titute an apneic block which included the first apnea and the 

.5min following its offset. The 3 rd and 5 th apneic blocks are 

onger in duration since they had new apneic episodes occurring 

ithin 7.5min of the offset of their preceding apneic events. The 
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Fig. 2. Signals used for feature engineering. Left: Time-series of RR intervals, inter-breath intervals (IBI) and movement. Right: Log-transformed and interpolated versions of 

RR intervals and IBIs. 

Fig. 3. Labeling of apnea, pre-apnea and inter-apnea blocks. 
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.5min-period immediately preceding the apneic blocks are pre- 

pnea blocks (or pre-apnea frames). The blocks in blue are inter- 

pnea blocks of varying duration which were further divided into 

maller non-overlapping frames of 7.5min to match with the pre- 

pnea frames. All other sections of unlabeled data were excluded 

s they were confounded by feedings or nursing assessments. The 

otal number of inter-apnea and pre-apnea frames from each sub- 

ect is listed in Table 1 . 

.4. Feature engineering 

Many studies have suggested the existence of a bidirectional 

ardio-respiratory coupling in preterm infants where the cardio- 

ascular and the respiratory rhythms are regulated synergistically 

o ensure adequate ventilation [ 37 , 38 ]. The physiological basis in- 

ludes delays from a host of latencies between output variables 

nd feedback signals to sensors. An example is the time delayed 

ffect on respiratory and heart rate due to a brief change in ven- 

ilation. These delays reflect a series of complex signaling pro- 

esses, for example circulatory transport and chemoreceptor sig- 

aling of carbon dioxide and hydrogen ion. Higher coordination be- 

ween two time-series has been demonstrated when small delays 

etween the signals were considered [39] . 
4 
In order to exploit this physiological finding, a time-delayed 

orrelation analysis was performed to capture effects from within 

s well as across a time-delayed channel. This approach is moti- 

ated by the observation that auto- and cross-correlations of time- 

elayed signals can reveal hidden parameters in the stochastic dy- 

amical system that generates the signals. These features may dif- 

er between the inter-apnea and pre-apnea segments. The time- 

elayed correlation procedure is illustrated in Fig. 4 . The length 

f a data block and the time delay are parameters to generate 

he features that should be predefined. Since these were unknown, 

 different block lengths were used (10s, 20s, 30s, 40s, 50s and 

0s). This implies that at every time point, 2min of past data were 

sed for the computation of features, 60s from the length of cur- 

ent block, and 60s from the time-delayed block used for cross- 

orrelation. This effectively translated each 7.5 min pre-apnea seg- 

ent into a 5.5min feature matrix. For each block length, the zero- 

ag correlation of the current block with past data was obtained. 

he time delay between current and past blocks was varied be- 

ween 0s and 59s at 1s increments, thus generating 330 time- 

bservations from the 5.5min (330 s) feature matrix . For the RRI 

ime series, correlation with past values within the channel re- 

ulted in a total of 360 features (60 features obtained from each 

f the 6 block lengths). The IBI time-series yielded another 360 
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Fig. 4. Schematic representation for feature engineering. 
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eatures. In addition, 360 features were obtained from the cross- 

hannel correlations from previous RRI values to IBI and 360 fea- 

ures from previous IBI values to RRI values. 

In previous work, we showed that apneic events were asso- 

iated with longer movement durations occurring before the on- 

et compared to after the onset of apneas. Additionally, move- 

ent significantly increased respiratory variability [34] . This infor- 

ation was used by taking zero-lag correlations between IBI and 

ime-delayed previous movement, thus providing another 360 fea- 

ures. Presence or absence of movement was captured in a binary 

ime-series. Therefore, at each of the 330 observations, a total of 

800 features were obtained, which were highly correlated within 

ach set of 360 that they were obtained from. Principal component 

nalysis (PCA) was then used on each set of 360 features to con- 

ert them into statistically independent, uncorrelated and orthogo- 
5 
al features (principal components). The number of principal com- 

onents accounted for at least 95% of the dataset variance. This re- 

ulted in a total of 31 features: 3 from the within RRI correlations; 

0 from the within IBI correlations; 3 from cross-correlations be- 

ween previous RRI and IBI; 5 cross-correlations between previous 

BI and RRI; and 10 from cross-correlations between past move- 

ent and IBI. The features were standardized to have zero mean 

nd unit variance before conducting the PCA. Features were gener- 

ted from past data at 10s intervals. 

.5. Training and testing data 

The subjects’ data were divided into two groups: a training 

ata set (comprising 7 subjects) and a testing data set (compris- 

ng 3 subjects). Each subject in the training data set was sep- 
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Fig. 5. Example of stratified k-fold cross-validation. 

a

m

a

u

a

l

w

b

u

k

o

t

i

r

2

c

a

p

m

v

s

d

p

D  

d

w

m

a

n

g

w

i  

e

L

i

a

m

i

r

t

f

p

s  

s

p

o

s

t

u

f

w

m

t

v

t

p

u

i

t

o

n

I

w

t

a

e

w

d

2

w

d

t

t

s

d

m

c

t

h

rately used for cross-validation to evaluate the model’s perfor- 

ance. Due to the imbalance between the number of pre-apnea 

nd inter-apnea segments, stratified k-fold cross-validation was 

sed [40] ( Fig. 5 ). This maintained the proportion of pre-apnea 

nd inter-apnea frames in all folds. The number of folds was se- 

ected as the total number of pre-apnea frames in a subject but 

as capped at 10. This ensured that for subjects with a small num- 

er of pre-apnea frames ( < 10), each pre-apnea frame would be 

sed only once in the out-of-fold testing. The model is then trained 

 times, with the performance measures computed on predictions 

f the out-of-fold dataset. The cross-validation approach identified 

he best model parameters used for the testing datasets. The test- 

ng dataset was not involved in the training procedure but used to 

eport the model’s performance on unseen data. 

.6. Model development 

The objective of the model was to predict an apneic event. This 

ould be achieved by classifying the data into inter-apnea and pre- 

pnea frames. We used a combination of unsupervised and su- 

ervised learning methods to build this model. The unsupervised 

ethod consisted of Gaussian Mixture Models, whereas the super- 

ised method was a Logistic Regression as a final stage of the clas- 

ification. 

A Gaussian mixture model (GMM) is a parametric probability 

ensity function represented as a weighted sum of Gaussian com- 

onent densities [41] . In this model, data from the N-observation, 

-feature space ( x 1 , x 2 , . . . x d ) were assumed to arise from a ran-

om vector with density given by, 

f ( x ) = 

∑ C 

i =1 
W i g ( x | μi , �i ) (1) 

here, C is the number of Gaussian mixture components, W i is the 

ixture weight, i.e., the prior probability of a certain component 

nd g( x | μ, �) are the component Gaussian densities. Each compo- 

ent density is a D-variate Gaussian function of the form, 

 ( x μi , �i ) = 

1 

( 2 π) 
D 
2 | �i | 1 2 

e −
1 
2 ( x −μi ) 

′ �−1 
i ( x −μi ) (2) 

ith mean vector μ and covariance matrix �. Generally, the mix- 

ng parameters θ = (W 1 , . . . W k , μ1 , . . . μk , �1 , . . . �k ) are

stimated from training data by maximizing the log-likelihood, 

 (θ| x ) = 

N ∑ 

j=1 

ln 

[ 

K ∑ 

i =1 

W i g(x | μi , �i ) 

] 

(3) 

A generally used approach for a maximum likelihood solution 

s the Expectation Maximization (EM) algorithm. EM is an iterative 

lgorithm that starts with an initial estimate for θ and iteratively 

odifies θ to increase the likelihood of the observed data. 
6 
GMMs have been extensively used in speaker and language 

dentification [41-43] . The premise of the method is to build sepa- 

ate GMMs from the inter-apnea and pre-apnea datasets. Each of 

hese GMMs encode the distribution of the corresponding class 

eatures. This technique has been used before in biomedical ap- 

lications such as identification of epileptic seizures [44] and ECG 

ignal classification [ 45 , 46 ]. It was also used in the preliminary

tudy by [35] to predict apneas that performed a coupling ap- 

roach using Bayesian adaptation which assisted in the separation 

f the Gaussian representing pre-apneas from the Gaussian repre- 

enting inter-apneas. The Bayesian adaptation was essential since 

he individual Gaussians were sensitive to the random initial val- 

es in the EM algorithm. 

We applied a different approach to counter this problem. First, 

or each (k-1)-fold of the cross-validation, 10 individual models 

ere created separately for the inter-apnea and pre-apnea seg- 

ents of the training data. The training data were then parsed 

hrough each of the 20 models and negative loglikelihood (nlogL) 

alues for each observation were obtained. The average nlogL was 

hen computed from 10 inter-apnea and 10 pre-apnea model out- 

uts. The two new columns along with their class labels were then 

sed to train a logistic regression classifier. The model is illustrated 

n Fig. 6 . 

The logistic regression is a binary classification model in which 

he conditional probability of one of the two possible realizations 

f the output variable was assumed to be equal to a linear combi- 

ation of the input variables, transformed by the logistic function. 

t is expressed as, 

f = 

1 

1 + e −p T �
(4) 

here f is the output of the logistic expression having values in 

he interval [0,1]; ф has two column vectors corresponding to the 

verage nlogL obtained from the inter-apnea and pre-apnea mod- 

ls for each observation and p is a column vector containing the 

eights of the linear combination. T is the transpose operator. 

The out-of-fold test data were subjected to the same proce- 

ure to make predictions, where the features were inputs to the 

0 GMM’s, their nlogL averaged to produce two columns, which 

ere then inputted to the trained logistic regression classifier. Pre- 

ictions from all the test folds were collected and compared with 

heir expected outcome to evaluate performance across the entire 

raining dataset. Also, to account for the randomness in the k-fold 

plits and the initialization in the EM algorithm, the above proce- 

ure was repeated 50 times and the average ( ±SD) performance 

easures were obtained. For each subject, the number of Gaussian 

omponents in each GMM was chosen as the one that maximized 

he Area Under the Curve (AUC), described in the next section. A 

igher number of Gaussian components resulted in overfitting of 
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Fig. 6. Schematic Diagram of the classifier based on Gaussian Mixture Models (GMM) and Logistic Regression. 
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he training data. Therefore, the best performance measures were 

eported when 2 or 3 Gaussian components were used. 

Training on (k-1) th fold: GMM development: For each inter- 

pnea and pre-apnea frame, a feature matrix of dimension (330- 

y-31) was obtained, where 31 indicates the number of features 

rom PCA at each time step; 330 indicates the total duration of 5.5 

in (330s). All inter-apnea frames were used to create 10 different 

nter-apnea GMM models. A similar procedure was conducted on 

he pre-apnea frames. 

Training the Logistic Regression Classifier: The training data 

ere parsed through each of the 20 models and negative loglike- 

ihood (nlogL) values for each observation were obtained. The av- 

rage nlogL was then computed from 10 inter-apnea and 10 pre- 

pnea model outputs. The two new columns along with their class 

abels were then used to train a logistic regression classifier. 

Testing on k th fold: Data from the k th fold were also parsed 

hrough each of the 20 models and nlogL values for each obser- 

ation were obtained. The trained logistic regression classifier was 

hen used to classify the observations as belonging to either a pre- 

pnea or an inter-apnea segment. 
7 
.7. Performance evaluation 

The performance evaluation criteria were based on the AUC 

area under the curve) with reference to the previously published 

ork [35] . The AUC was used to evaluate the prediction perfor- 

ance of the classification model based on the Receiver Operat- 

ng characteristic Curve (ROC): a plot of the sensitivity versus 1 - 

pecificity that was obtained by varying the classification thresh- 

ld from output ( f ) of the trained logistic regression model. The 

UC scores range between 0 and 1, with 0 defining perfect clas- 

ification to the wrong class, and 1 defining perfect classification 

o the correct class. An AUC score of 0.5 corresponds to prediction 

y chance. Higher scores correspond to better classification perfor- 

ance. 

Sensitivity or True Positive Rate (TPR) was defined as the frac- 

ion of pre-apnea frames that were predicted correctly. Speci- 

city or True Negative Rate was defined as the fraction of inter- 

pnea frames that were predicted correctly. Therefore, for the AUC 

e computed (1-Specificity) = False Positive Rate (FPR), or the 

raction of inter-apnea frames incorrectly classified as pre-apnea 
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Table 2 

Performance measures of the model for all subjects that were used for cross- 

validation. For the original AUC, mean ± standard deviation are presented. 

For the label shuffling, the means and the 95% confidence intervals are pre- 

sented. The predictive performance was significantly different from chance 

for all subjects at p < 0.05. 

Sub ID AUC p-value AUC(permutated labels) 

1 0.73 ± 0.03 0.01 0.49 (0.28 - 0.70) 

2 0.87 ± 0.03 0.01 0.51 (0.22 - 0.79) 

3 0.81 ± 0.02 0.00 0.47 (0.28 - 0.66) 

4 0.84 ± 0.06 0.00 0.47 (0.20 - 0.73) 

5 0.77 ± 0.08 0.03 0.50 (0.21 - 0.78) 

6 0.67 ± 0.02 0.01 0.50 (0.35 - 0.64) 

7 0.71 ± 0.04 0.02 0.52 (0.33 - 0.71) 

Mean 0.77 ± 0.04 
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rames. Hence, FPR represented the probability of false alarms in 

he model. The optimal values of TPR and FPR were reported at 

he threshold that minimized the distance between the ROC curve 

nd its top left corner (perfect classification). Since the proportion 

f pre-apnea and inter-apnea frames was highly imbalanced, accu- 

acy of the classifier was not computed as its interpretation would 

e misleading. 

A permutation test was performed with two objectives: 1) To 

est the null hypothesis that there was no signal in the data. If 

he data did not have any predictive information about apneas, its 

erformance would be statistically similar to what would be ex- 

ected by chance. 2) To quantify the degree of overfitting when 

ampling under the null hypothesis. If the mean AUC from the per- 

utations was not 0.5, then the analysis protocol was biased by 

n amount equal to the distance from 0.5. Permutation testing was 

erformed by randomly shuffling the pre-apnea and inter-apnea la- 

els for all frames and re-running all steps of the predictive ana- 

ytic framework including k-fold cross-validation, model develop- 

ent and performance evaluation. The shuffling procedure was re- 

eated 10 0 0 times and an AUC was obtained for each profile. The 

ean AUC and the distribution of AUCs from the 10 0 0 profiles was

ompared with the AUC of the original unshuffled data (one-sided 

-value) to test that the original AUC was significantly higher than 

hance. 

In order to compute features at any time point, data from the 

ast 2 minutes were used. Thus, the predication of the positive 

lass (pre-apnea) could only occur in the last 5.5min of the 7.5min- 

rame. Further, to reduce number of false positives, a time point 

as considered as pre-apnea if at least one of the last two points 

ad a positive outcome. Since features were only generated every 

0s, this further reduced the prediction time from 5.5min (330s) to 

10s. The cumulative distribution of the time of earliest prediction 

as obtained, showing the efficacy of the model in predicting ap- 

eic events prior to their onset. Total false alarm durations (FA time ) 

ere reported as total time in minutes normalized per hour of 

nter-apnea duration. 

.8. Probability of prediction based on severity of events 

The clinical importance of the model would arise from suc- 

essful prediction of severe ABH events. The severity of an ap- 

ea is related to the degree of bradycardia since bradycardias are 

losely associated with apneic pauses. In preterm infants, bradycar- 

ias below 100bpm result in a 10-50% reduction in cerebral blood 

ow velocity. The reduction is more than 50% when the heart rate 

rops below 60bpm [12] . This can further lead to reduced clear- 

nce of metabolic by-products and to desaturation of cerebral oxy- 

en. Based on these findings, apneic events were classified as mild 

100–80bpm), moderate (80–60bpm), and severe ( < 60bpm). For 

he ABH events in our study, median bradycardia values were used 

ithin each range of severity. 

.9. Importance of including movement-derived features 

The predictive analytic framework was repeated for all data, 

rst with exclusion of any movement features, then by including 

ovement features. Excluding movement features meant that only 

1 of the 31 features from the PCA output were used in the train-

ng of the models. The objective of this analysis was to test if 

xcluding movement features improves or worsens the prediction 

erformance of apneas. For this test, AUC obtained by using 31 fea- 

ures and 21 non-movement related features were compared with 

 paired t-test. 
8 
.10. Real-time prediction on unseen data 

The test data consisted of 3 subjects that were not used in the 

raining procedure. To apply the model to these subjects, labeled 

ata including a sufficient number of pre-apnea segments would 

e needed. This could cause delay in deploying the model in real 

ime. In some situations, labeling data may not even be practical. 

o avoid this problem, we completed the training procedure using 

ata from train datasets (7 subjects) and predictions were made 

n the test subjects. Subjects were matched based on their aver- 

ge heart rates. Once a matched train dataset was identified, their 

ormalization values and PCA coefficients were applied to the cor- 

esponding test subject data. Predictions were obtained from 50 

odels comprising of the GMM-Logistic Regression combination, 

nd final prediction was based on a majority vote from the 50 

odels. The prior proportion of inter-apnea and pre-apnea frames 

n the training set was used in determining the prediction thresh- 

ld with each of the 50 models. 

In a real-time application, physiological data would be recorded 

s new predictions are made. A positive prediction would sound an 

larm or turn on a stochastic vibratory mattress. If an undetected 

pnea was encountered, a new pre-apnea frame would be created 

rom 7.5min of data prior to the apneic onset. New inter-apnea 

rames would also be formed from data that the model labeled 

s true negative. These new frames would replace data from the 

rain subject and new models would be generated to make pre- 

ictions on future data. If there were no undetected apneas for 4 

ours (or to the respective feeding interval), only the new inter- 

pnea frames would be used to create new models upon replacing 

he train subject’s data ( Fig. 7 ). 

We tested this framework on the 3 test subjects and evaluated 

he performance measures of TPR and FA time . Note that in real 

ime, if an action is taken to respond to an alarm (whether true 

r false), it may mitigate an upcoming apnea before it occurs and 

oth TPR and FA time will not be available. However, for the retro- 

pective analysis of our test data we were able to report these per- 

ormance measures. The distribution of the earliest detection times 

nd the probability of detection based on severity is also reported. 

. Results 

.1. Classification performance of model 

Performance evaluation measures were obtained from the area 

nder the ROC curve (AUC). Fig. 8 shows ROC curves from 2 

ubjects. The red dashed line signifies random classification. The 

haded areas around the ROC curve represent the standard devia- 

ion achieved by k-fold cross-validation of AUC estimates over 50 

epeated runs of cross-validation. Table 2 shows that the AUC val- 

es for all subjects were above 0.5. Statistical significance for each 
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Fig. 7. Real-time prediction scheme. 

Fig. 8. ROC curves from prediction scores for Subjects 1 and 2. The dashed red line signifies random classification. The shaded green area represents the standard deviation 

of the ROC curve obtained from 50 repeated runs of the model. 

Fig. 9. Probability distribution of the AUC from 10 0 0 shuffled runs for Subjects 1 and 2. The original AUC is indicated by the dashed red lines. 
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ubject’s AUC was tested by randomly shuffling the labels 10 0 0 

imes. For 2 subjects, Fig. 9 shows the distribution of the AUC from 

he 10 0 0 permutations and the AUC of the original labels is indi-

ated by the dashed red line. The table shows the p-values for all 

ubjects. These results suggest that the AUC was significantly dif- 

erent from chance, and that the data indeed had predictive infor- 

ation about apneas. Table 1 also reveals that the mean AUC from 
c

9 
ermutation testing was 0.5 and that then the analysis protocol 

as not biased. 

.2. Apnea predications and false-alarm duration on cross-validated 

ubjects 

For each subject, the TPR and FPR were achieved from the ROC 

urve at the prediction score threshold that minimized the dis- 



I. Zuzarte, D. Sternad and D. Paydarfar Computer Methods and Programs in Biomedicine 209 (2021) 106321 

Table 3 

True Positive Rate and false positive duration for each subject. 

Sub ID True Positive Rate False Positive Rate Total inter-apnea duration(hr) False positive duration(min/hr) 

1 0.70 ± 0.10 0.34 ± 0.09 14.76 2.82 ± 0.96 

2 0.86 ± 0.09 0.15 ± 0.06 25.94 1.11 ± 0.49 

3 0.88 ± 0.08 0.31 ± 0.04 19.16 8.59 ± 1.80 

4 0.85 ± 0.11 0.23 ± 0.07 22.46 1.34 ± 0.55 

5 0.74 ± 0.19 0.15 ± 0.05 9.08 1.02 ± 0.47 

6 0.67 ± 0.05 0.28 ± 0.05 30.07 3.35 ± 0.92 

7 0.71 ± 0.08 0.32 ± 0.08 7.24 1.88 ± 0.70 

Mean 0.77 ± 0.10 0.25 ± 0.06 2.87 ± 0.84 

Fig. 10. Cumulative distribution of prediction time relative to the onset of apnea (training data set). 
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ance between the ROC curve and the perfect classification point at 

he top left corner. Since FPR reported a proportion of inter-apnea 

rames that were misclassified as pre-apnea frames, FPR was fur- 

her converted to represent the total false alarm time. The false 

larm time was reported in minutes per hour of the total pre- 

ictable inter-apnea duration as each subject had different record- 

ng durations. Table 3 shows the TPR for each subject along with 

he total inter-apnea duration and the false positive time in min/hr. 

Regarding the accurately classified pre-apnea frames, their pre- 

iction times relative to the apnea onsets were computed. Fig. 10 

hows the cumulative distribution of these prediction times: 53 of 

ll 66 pre-apnea frames were correctly classified. The red dashed 

ine indicates that 50% of the correct predictions occurred 4min 

efore their apnea onset. 

The probability of predicting an apneic event was further plot- 

ed against their severity based on the bradycardia associated with 

he apnea as shown in Fig. 11 . The different shades of red indicate

everity of an apneic event based on bradycardia categorized into 

ild (80-100bpm), moderate (60-80bpm) and severe ( < 60bpm). 

arker red shades represent more severe events. Dots in these 

anges represent an apneic event, with its x-coordinate indicat- 

ng the median bradycardia in the category and y-coordinate in- 

icating the probability of prediction of that event obtained from 

0 repeated runs of the model. The dashed blue line represents 

he threshold for final classification of an event as predicted or 

issed. The color of the dot encodes information about the oxy- 

a

10 
en saturation levels associated with the event. Note that the range 

 100bpm by definition does not indicate a bradycardia. The dots 

n this range represent apneas (non-bradycardic) that were greater 

han 20s, but were not accompanied by a bradycardia. The x- 

oordinate of these dots are the minimum heart rate values. The 

odel was able to successfully predict events in all 4 ranges (prob- 

bility of predicted events: severe: 0.83, mild: 0.74, moderate: 0.83, 

on-bradycardic: 0.83). 

.3. Performance measures of models with and without 

ovement-derived features 

The next step was to build models after movement-derived fea- 

ures were excluded to test the importance of movement in predic- 

ion of apnea. Only 21 features from the PCA were used to build 

hese models. Fig. 12 compares the AUC, TPR and false positive 

ime between the models that include and exclude movements. 

he AUC from the models without movement features was sig- 

ificantly smaller than the ones that included movement features 

p = 0.02). Moreover, the AUC from 5 of the 7 subjects (Subject #1, 

, 5, 6, 7) were not significantly different from chance, implying 

hat including movement-derived features improved the prediction 

f apneas. TPR and the total duration of false positive time was 

lso improved when movement-derived features were included. 
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Fig. 11. Cross-validated prediction based on severity of apneas (training data set). 
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.4. Apnea predictions and false-alarm durations for new test 

ubjects 

The models were then applied on the data from test subjects. 

ue to the randomness in the initializations of the EM algorithm 

o fit GMMs, 50 such models were used, and predictions were 

ade at every time point. Fig. 13 shows the cumulative distribu- 

ion of these prediction times: 31 of 41 ABH events were correctly 

redicted. The red dashed line indicated that 50% of the correct 

redictions occurred 3.2min before their apneic onset. As for the 

ross-validated dataset, prediction based on severity is plotted in 

ig. 14 . The model yielded better predictions in the 3 clinically sig- 

ificant ranges (probability of predicted events: severe: 0.75, mild: 

.75, moderate: 0.78). 

. Discussion 

This study proposed that cardiorespiratory features coupled 

ith movement features are better predictors of apneas than car- 

iorespiratory signals alone. To test this hypothesis the study used 

 combination of unsupervised and supervised machine learning 

ethods. These features are readily available from signals that are 

ontinuously monitored in the NICU as a part of routine care of 

reterm infants. Furthermore, we proposed a framework for the 

mplementation of the model that will be able to make real-time 

redictions on new subjects. 

.1. Comparison with previous studies and novelty of this study 

Only few studies have investigated the prediction of apneic and 

radycardic events in preterm infants and reported the model per- 

ormance. For example, Shirwaikar et al. used support vector ma- 

hines and random forests [29] and deep neural networks [30] to 

redict the total occurrences of apneic episodes one week after 

ICU admission. While successful, their studies were not designed 
11 
o predict the timing of individual apneic events. A number of 

tudies focused on the prediction of bradycardic events. For ex- 

mple, Pravisani et al. [24] used hierarchical classification methods 

nd were able to predict 10 out of 13 severe bradycardic events 

 premature infants, Gee et al. [25] examined heart rate inter- 

als in 10 preterm infants with a total of 4 4 4 bradycardic events. 

heir prediction algorithm was based on point process analysis and 

chieved an AUC of 0.79. The same dataset was used by Mah- 

ud et al. [26] who achieved a slightly higher AUC of 0.86 with 

oosted decision trees. These studies [24-26] , however, only looked 

t bradycardic events without taking apnea and hypoxias (ABH 

vents) into account. As these ABH events are of similar clinical 

mportance and are subject to surveillance and alarms, Williamson 

t al. [28] examined these ABH events using quadratic classifiers 

n cardiorespiratory based features. On 6 subjects, the AUC of their 

odel was 0.73, but their results were statistically different from 

hance in only 3 infants. Their AUC improved to 0.80 and became 

tatistically different from chance in 5 of 6 infants when they used 

aussian mixture models and when they included movement fea- 

ures [35] . However, each of the 6 subjects were recorded for only 

 short time between 4 and 7 hours. 

Our study expanded on these previous approaches by adding 

everal enhancements. Firstly, our study increased the number of 

ubjects to 10, each with a total recording duration between 19 

nd 72 hours. Secondly, movement was estimated from the PPG 

ignal at a greater temporal resolution using a wavelet-based algo- 

ithm [36] in contrast to Fourier-based analysis used in [35] . We 

lso demonstrated how the inclusion of movement features statis- 

ically improved the AUC of the models. Thirdly, we reported the 

fficacy of the model in predicting individual apneic events based 

n the severity of the associated bradycardia and hypoxia. Finally, 

e also included the distribution of their prediction times. Train- 

ng models on datasets of longer durations as well as obtaining 

eatures at a higher temporal resolution significantly improved the 

rediction of ABH events, thus yielding an AUC of 0.77. 
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Fig. 12. Comparison of performance methods from models including (blue) and ex- 

cluding (red) movement-derived features. The black dashed line in the AUC Fig. in- 

dicates classification by chance. When movement features were excluded to train 

the models, classification within the subjects #1, 4, 5, 6 and 7 were not significantly 

different from chance. All other models were significant. 
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.2. Improvement in model performance with inclusion of movement 

eatures 

Our results showed that the AUC of the model was better when 

eatures from IBI, RR and movement were included, in contrast to 

hen only features from IBI and RR were used. Moreover, in all 7 

ubjects, the models including movement had an AUC value signif- 

cantly greater than 0.5, indicating that the predictions were signif- 

cantly different from those made by random chance. Before move- 

ent was included, the AUC in 5 of the 7 subjects were not differ-

nt from 0.5. From a data analysis point of view, IBI’s from res- 

iratory signals that are acquired through respiratory inductance 

lethysmography are usually distorted during movement. Hence, it 

ay have been that adding movement information improved the 

odel since it also considered IBI variability during movement. 

owever, from a physiological perspective, movement and apneas 

ave been shown to be associated with each other [31-34] . The 

espiratory controller in the brainstem that regulates the rate of 

reathing, receives inputs through several feedback and feedfor- 

ard (central command) mechanisms [47] . One of these feedback 
12 
echanisms is movement which sends signals through muscle af- 

erents to the respiratory controller or even fine-tune the feedfor- 

ard commands [48] . Although the exact mechanism of why some 

ovements in preterm infants inhibit their breathing is unknown, 

ne could speculate that immature control of the respiratory cen- 

er and reduced chemoreceptor sensitivity account for some of the 

auses [ 49 , 50 ]. 

The true positive rate (TPR) or the probability of prediction of 

n apneic event was 77% on average. This estimate was further 

ub-classified based on the severity on the bradycardia that was 

ssociated with the apneic event. Severe bradycardias ( < 60bpm) 

ave been shown to cause more than 50% reduction in cerebral 

lood velocity [12] . Our results show that 83% of these severe 

vents could be predicted. Of the ones that were not predicted, 

he minimum SpO 2 levels were still above 70%. Similar results 

ere obtained on apneas from the test datasets. Detection of these 

evere bradycardic events are of utmost clinical importance as 

hey can enable early interventions that circumvent the upcoming 

vent. 

.3. Prediction time 

Pre-apnea segments were considered as the 7.5min segments 

rior of the onset of an apnea. Clark et al. modeled apneas of 

rematurity as a Markov process where apneas were the result 

f transitions through 4 breathing states [51] . These 4 states had 

verage lifetimes, categorized in term of decreasing stability from 

2hr, 2hr, 10min and 10s, with transitions to an apneic state pos- 

ible from all states, but more likely from the lesser stable states 

f 10min and 10s. They speculated that the 12-hr state represented 

akefulness and the 2-hr state represented various stages of sleep. 

he remaining two states of 10min and 10s represent transition 

tates to apnea due to disproportionate feedback mechanisms to 

he respiratory controller. A prediction window of 7.5min that en- 

ompassed these two states was a good compromise between be- 

ng close enough to an apneic onset and not being too far away 

hat would model inter-apnea distributions. On both training and 

est data sets, half of the ABH events were predicted between 3 to 

min before their onset. In future work, other prediction windows 

etween 5 and 10min might be evaluated for comparison. 

.4. Real-time prediction 

The prediction on test subjects was demonstrated as a basis for 

he real-time implementation, where labeled data would not be 

eadily available. Labeled data from trained subjects were used for 

nitial prediction, but they were replaced by auto-labeled data from 

he test subjects as they became available. For this study, a match- 

ng training subject with a comparable average heart rate was se- 

ected. In practice, once data from a large number of subjects are 

vailable, additional demographic information, such as gestation 

ge, post-menstrual age, birth and study weight could be used to 

nd appropriately matching training subjects. Data on the train- 

ng subjects could easily be auto-labelled into inter-apnea and pre- 

pnea segments using the defined threshold of apnea, bradycar- 

ia and oxygen desaturation. However, sections of feeds and other 

nterventions would have to be manually annotated in order to 

e excluded from training the models. Data during these condi- 

ions can have a different physiological basis when compared to 

he inter-apnea and pre-apnea frames. 

In a real-time prediction scenario, a positive detection of a pre- 

pnea frame could be a prediction for apnea or a false alarm. If 

n intervention is performed in response to the positive detection, 

he outcome will be unknown. Interventions could be automated 

here a stochastic vibratory mattress would turn on. Stochastic vi- 

rotactile stimulation has been demonstrated to reduce the inci- 
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Fig. 13. Cumulative distribution of prediction time relative to onset of apnea (test data set). 

Fig. 14. Prediction based on severity of apneas (test data set). 
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ences of apneas, bradycardias and desaturations in preterm in- 

ants [ 16 , 17 ]. This effect is based on the hypothesis that stochas-

ic inputs to the respiratory controller would stabilize its rhythmic 

ctivity through a stochastic resonance-type mechanism [ 16 , 52 ]. 

alse alarms of apneas would result in intermittent periods of vi- 

rotactile stimulation for a preset duration. However, this does not 

ose any clinical risk to the infant, since the subtle stimulation 

oes not disrupt sleep. On the other hand, one might suggest that 

eeping the mattress ‘on’ at all times or for a longer period of time 

ould not require the need for prediction. However, this could 

esult in habituation to the stimulation to an extent that it may 

ventually attenuate the effect of reducing apneas [53] . If the re- 

ponse to a positive prediction is intervention by a nurse, addi- 

ional thresholds would need to be coded in the algorithm where 

he first few alarms are warning tones, leading to apnea alarms for 

ersistent positive predictions. 

An undetected apnea would prompt the algorithm to retrain 

he model based on recently tested data. Labels for the tested 

ata would be automatically labeled from the ECG, respiration and 
13 
PG signals and the corresponding features would be obtained. 

ew prediction would resume at least 7.5min from the end of 

he last apnea in the cluster of the undetected apnea, providing 

nough time to retrain the new models. During the re-training, 

ross-validation to find the best number of clusters was not per- 

ormed since it is a time-consuming process that may not be prac- 

ical for real-time prediction. However, depending on availability of 

omputational resources, this could be performed in parallel to the 

rediction algorithm. 

.5. Alternative modelling techniques 

Our feature engineering procedure utilized correlations be- 

ween past data and current data to get a total of 1800 fea- 

ures which were reduced to 31. Other feature selection techniques 

ased on maximum relevance minimum redundancy and neigh- 

orhood component analysis were also tested. But since the fea- 

ures within each set of 360 features were highly correlated, PCA 

eemed to present the appropriate technique for feature reduction. 

eature selection could also have been performed on the set of 31 

eatures to further generate a small set of important features. As 

his exhaustive search is usually impractical it was therefore not 

erformed. 

Previous work with GMMs have used a background GMM for 

ll data from subject and then tuned this background GMM us- 

ng Bayesian adaptation on data for each class to further create 

eparate GMMs for each class [35] . We used the concept of boot- 

trapped aggregation on the GMM-Logistic Regression models to 

ccount for the random initializations in the EM algorithm of the 

MMs. This method was still able to classify the two labels from 

he underlying distributions of the GMMs, therefore Bayesian adap- 

ation was not performed. 

Our dataset has an imbalance between the number of inter- 

pnea and pre-apnea frames. One of the techniques that deal with 

mbalanced datasets focuses on rebalancing them, usually per- 

ormed by undersampling the majority class or oversampling the 

inority class [54] . However, depending on the domain, rebalanc- 

ng has shown to yield marginal improvements at best. The logis- 

ic regression model handles this imbalance since the probabilities 

chieved are based on the proportion of the class labels, and an 

ppropriate threshold can be used for the class assignment. 
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We attempted several other machine learning algorithms in- 

luding linear discriminant analysis, support vector machines 

SVM) and ensembles of boosted decision trees. Linear discrim- 

nant analysis and linear SVMs yielded poor performance mea- 

ures since they were unable to find an optimum linear sepa- 

able boundary between the two classes. Non-linear SVMs and 

oosted ensemble models have high complexity due to the num- 

er of hyperparameters that required tuning to train the model. 

urthermore, the best set of hyperparameters varied between sub- 

ects, making it difficult to use in a real-time implementation. This 

as likely due to the heterogeneity between subjects at different 

tages of prematurity. However, the GMMs were still able to en- 

ode the distibutions of the features in the inter-apnea and pre- 

pnea frames within each subject. The only hyperparameter that 

equired tuning in our proposed model was the number of mix- 

ures in the GMM that was usually two or three. Higher number 

f mixtures tended to overfit to the training data set. 

.6. Future work 

This study proposed a framework consisting of Gaussian Mix- 

ures and Logistic Regression Models to predict ABH events in 

reterm infants monitored in the NICU. Importantly, this analysis 

ould be implemented in real-time. Our results showed that in- 

luding features of movement into our framework significantly im- 

roved its predictive ability. However, it is important to note that 

he incidences and severities of ABH events in preterm infants de- 

end on several factors, such as gestational and post-menstrual 

ge of the infant and complications due to prematurity. The lat- 

er subjects the infant to interventions, procedures, and a variety 

f different drugs. Regarding the use of movement features in the 

rediction framework, our study used recordings for a duration of 

nly 1 to 3 days. However, in a previous longitudinal study, where 

ovement was continuously recorded over 3 months, we observed 

hat these features changed as an infant matured [55] . Therefore, 

o generalize our work to all preterm infants with a wide range of 

ges and comorbidities, the training of long-term recordings over 

he period of maturation and from a larger cohort of preterm in- 

ants is needed. Ideally, multi-site longitudinal recordings would 

ssist in understanding how the framework evolves and how im- 

ortant features at different stages of prematurity can be isolated. 

. Conclusions 

This study proposed a model to predict ABH events using car- 

iorespiratory and movement features. Our findings provide evi- 

ence that movement is a valuable physiological signal for improv- 

ng the predictive ability of such events. The prediction of apneas 

nd the associated bradycardias and hypoxias in preterm infants 

an enable a timely intervention by the nursing staff. It can also 

e combined with using an automated therapeutic mattress that 

an attenuate or prevent the onset of apneas. Hence, the algorithm 

as the potential to reduce morbidity, mortality and time of hos- 

ital stay of preterm infants. A study on a larger cohort of infants 

ith varying complications due to prematurity will help corrobo- 

ate and extend our present findings. 
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