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Abstract— Modern computer algorithms easily beat world
champions in chess or Go, but state-of-the-art robots are still
outperformed by two-year-old’s in manipulating the pieces, let
alone interacting with more complex objects. This work studied
human behavior when moving an underactuated object, a cup
with a ball rolling inside creating internal dynamics like sloshing
coffee in a cup. The objective was to develop a control model
that could replicate human behavior. Human movement data
were collected for transporting this cup-and-ball system, both
with and without external perturbations. The existing models in
the human control literature, including maximum smoothness,
optimal feedback control with minimum effort, and dynamic
primitives with impedance were revisited for this challenging
task. As these control models were primarily developed for
unconstrained reaching movements, they could replicate human
trajectories when transporting a rigid object. However, they fell
short when the object introduced complex interaction forces
due to its internal dynamics. Therefore, this study extended
the framework of dynamic primitives and used an optimal
controller to generate a maximally smooth zero-force trajectory
for the impedance operator when interacting with perturbations
from the object or the environment. Given the challenges that
robot control still faces when interacting with complex objects,
these findings may inform the development of bio-inspired
controllers for robotic manipulation.

I. INTRODUCTION

Despite significant advances in robot design and control,
human-like agility and dexterity has yet to be achieved in
robots, and much remains to be learned from human move-
ment control. Human and animal behavior has inspired the
development of many novel ideas and concepts in robotics;
for example, adaptive impedance-based control of manipu-
lators for physical interactions [1], central pattern generators
[2], exploitation of passive dynamics in locomotion [3], [4],
and many elements in the design and control of soft robots
[5], [6].

While state-of-the-art robotic manipulators are adept at
picking and placing rigid objects [7], they still struggle in
manipulating more complex objects such as flexible materi-
als, articulated objects, and containers with liquids. Most of
the approaches to the interaction with complex objects rely
on developing more accurate models and simulations [8],
however modeling every possible object a robot might en-
counter is not practical. Recent work has progressed towards
robot control without relying on high-fidelity models, e.g.,
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manipulating deformable objects [9]. However, this approach
assumes that the robot is quasi-static which makes this
control strategy not applicable to situations where dynamic
motion is involved. To gain further insight and potentially
inform and advance control algorithms, this study examines
how humans control objects with complex internal dynamics.

To date, studies on human motor control have predom-
inantly focused on reaching and pointing tasks, devoid of
any contact or interaction with dynamic objects. Only very
few studies have gone beyond rigid objects and investigated
the control of a linear mass-spring system [10]–[12], a cart-
and-pendulum system [13] and a whip [14], [15]. These
studies revealed that the principles that are sufficient for
simple human movements do not generalize to more complex
physical interactions. Instead, objectives such as predictabil-
ity [16], stability of the underactuated object [17], [18], or
minimization of transient duration [19] have come to the
fore. For the task of bringing a dynamic object to rest
humans exploit the internal dynamics of the object [11],
[12], [20]. These novel computational analyses have shed
light on the richness of the human capabilities. However, a
generative model that can synthesize the human behavior in
such complex tasks is yet to be developed.

In computational movement neuroscience, several control
models have been proposed and validated for the task of goal-
directed reaching in the horizontal plane. One of the earliest
control models has been inspired by the straightness of hand
trajectories in kinematic space associated with a bell-shaped
velocity profile [21]. It was then shown that these features
are replicated when the third derivative (jerk) of the hand
trajectory is minimized (i.e., smoothness is optimized) [22],
[23].

A conceptually distinct model that has successfully repli-
cated key features of human behavior in these reaching tasks
is stochastic optimal feedback control (OFC), specifically
when it trades off minimum effort for kinematic accuracy
[24], [25]. This OFC model could account for human move-
ments and adaptations to state-dependent force fields [26],
perturbations [27], and distortions in visuo-motor mappings
[28]. The minimum-variance model [29] that could replicate
the speed-accuracy trade-off, observed in numerous human
behaviors, has been shown to be equivalent to OFC when
minimizing effort [30].

One other distinct approach are dynamic primitives that
has been developed in both human studies and robotics [31]–
[34]. Instead of relying on pre-planned trajectories, human
or robot movement trajectories are generated via building
blocks that have stability, i.e., dynamic attractors. Two basic
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Fig. 1: The cup-and-ball experimental paradigm. A. The liquid
inside the cup is approximated by a ball rolling inside a circular cup.
B. The cup-and-ball model is equivalent to a cart-and-pendulum
system. C. The cup-and-ball system simulated in the virtual envi-
ronment; participants interact with it by moving a haptic robot. D.
The task is to move the cup to the target without losing the ball.

primitives are discrete and rhythmic attractors that are param-
eterized and combined to create more complex behaviors. In
robotics, dynamic movement primitives (DMPs) have been
used to teach robots how to perform a variety of behaviors
from human demonstrations, such as tennis swings [35],
grasping [36], and playing drums [37]. However, DMPs
are constrained to learning from explicit demonstration. In
human neuroscience, Sternad and colleagues proposed dy-
namic models for these two basic attractors and demonstrated
how their combination can reproduce a variety of unimanual
and bimanual behaviors [31], [38], [39]. More recently,
Hogan and Sternad extended the set of fundamental dynamic
primitives by including mechanical impedance to specifically
address physical interactions with objects [40]. Thus, in the
context of interacting with an object or the environment, the
primitives are used to determine the ‘zero-force trajectory’ of
the impedance operator. However, it is yet to be determined
how this zero-force trajectory is generated for the interaction
with a complex object.

While these models have all been successful in capturing
important features of human movements in tightly con-
strained experimental tasks, their ability generalize to more
complex behaviors, such as manipulation of underactuated
systems, has not yet received attention. Hence, the first
aim of this work was to evaluate extant control models
in their ability to replicate human behavior for the control
of a complex underactuated object. The second aim used
these insights and developed a unifying control framework
that could replicate human behavior in both simple and
complex interactions. This work may inform the development
of control algorithms for dexterous robotic manipulation.

II. METHODS

A. Complex Object: A Ball in a Cup

In order to gain further insight into human motor control,
a rich test bed with dynamically complex control challenges
is needed. Our work has taken inspiration from the daily
activity of carrying a cup of coffee; the dynamics of the
coffee creates nonlinear interaction forces acting on the
hand [16], [18]. Such nonlinear and potentially chaotic

interaction forces require control mechanisms that are absent
in unconstrained reaching, even when exposed to the linear
state-dependent force fields commonly studied in the human
control literature. To make the complex task scientifically
repeatable and computations tractable, the dynamic effects of
the sloshing liquid inside the cup were simplified to a sliding
ball inside a 2-D cup (Fig. 1A). This cup-and-ball system is
equivalent to a 2-D cart-and-pendulum system (Fig. 1B) with
the equations of motion:

(M +m)ÿ = ml
(
φ̇2 sin(φ)− φ̈ cos(φ)

)
+ Finter + Fpert,

(1)

lφ̈ = −g sin(φ)−Gÿ cosφ, (2)

where y and φ are the cup position and ball angle, respec-
tively. Finter is the force of the hand interacting with the cup,
and Fpert is a perturbation force. System parameters M = 3
kg and m = 0.3 kg are the cup and ball masses, respectively.
The pendulum length l = 0.5 was also the radius of the
cup, g = 9.81 m/s2 is the gravitational acceleration, and
G = 5 is the coupling term between the cup and the ball
dynamics. To make the control synthesis easier, the cup-
and-ball system was linearized around zero-states. The same
linearized equations are simulated in the virtual environment:

(M +m)ÿ = −mlφ̈+ Finter + Fpert, (3)

lφ̈ = −gφ−Gÿ. (4)

B. Experimental Procedure
Four participants (3 men, 21-33 yrs) took part in this study.

They gave written informed consent as approved by the Insti-
tutional Review Board at Northeastern University. The cup-
and-ball system was simulated in a virtual environment, and
participants interacted with the simulated system via a haptic
robotic interface that provided force feedback according to
the dynamics of the cup and ball (Fig. 1C). Participants were
instructed to move the cup at their self-selected speed via
moving the robot’s handle along a horizontal line to arrive
at a target box 40 cm to the right of their start point (Fig. 1D).
Participants were instructed that the ball should not ‘escape’
from the cup, i.e., its angle should not exceed the cup’s rim
(φrim = ±45◦). Each participant performed 3 sessions of
100 trials each with the following 3 conditions: In condition
1, the ball was rigidly attached to the bottom of the cup,
forming a single rigid object; in condition 2, the ball could
freely roll inside the cup making the system underactuated;
in condition 3, an impulse-like perturbation was applied to
the system in opposite direction of the cup movement at 60%
of the travel distance. This perturbation was applied in all
100 trials. The order of the three conditions was identical
for all participants.

In the virtual environment, the system was initialized with
y0 = −0.4, ẏ0 = 0, φ0 = 0, φ̇0 = 0, and the target box
was located at yf = 0. In the rigid-object condition, the
ball dynamics was removed and only an inertia (M + m)
was simulated in the virtual environment. In the perturbation
trials, Fpert = −20 N and lasted for 20 ms when the cup first
reached 60% of the travel distance, and was zero otherwise.



C. Existing Motor Control Models

Although models in the human control literature are less
granular than those in robotics, many of their core ideas
are comparable to those in robotics: (1) Planning of ac-
tions in kinematic space as maximally smooth trajectories
(minimum-jerk model, Fig. 2A), (2) Execution of actions via
optimally tuned feedback gains (optimal feedback control
model, Fig. 2B), and (3) Formation of actions as an evo-
lution of a dynamical system following attractor dynamics
(dynamic primitives model, Fig. 2C). Each of these concepts
will be tested against experimental data, and their merits will
be assessed in the context of the cup-and-ball task. Then the
strengths of these models can be combined and tailored into
a new framework.

1) Maximum Smoothness in Kinematic Space: Uncon-
strained point-to-point reaching movements tend to have
straight linear paths in kinematic space with bell-shaped
velocity profiles that exhibit high smoothness [22]. This
robust observation supported that humans favor smoothness
in kinematic space in goal-oriented tasks. The maximally
smooth hand (cup) trajectory is mathematically defined as the
one that minimizes jerk, i.e, time-derivative of acceleration,
during the movement:

y∗(t) = arg min

{∫ tf

0

(
d3y(t)

dt3

)2

dt

}
, (5)

given the boundary conditions:

y(0) = y0, y(tf ) = yf , (6)
ẏ(0) = ÿ(0) = ẏ(tf ) = ÿ(tf ) = 0, (7)

which results in a fifth-order polynomial trajectory:

y∗(t) = (8)

y0 + (yf − y0)

(
10
(
t
tf

)3
− 15

(
t
tf

)4
+ 6

(
t
tf

)5)
.

This control principle implies that humans bring their hand
from a given start position to stop at the target in a given
time via a pre-determined trajectory. This feed-forward hand
trajectory can be used to drive the cup-and-ball system (Fig.
2D). It must be noted that this model accounts for hand
motion in free space, but does not specify hand movement
in an interactive context, nor can it predict how the behavior
may change in response to perturbations. Therefore, this
model alone is insufficient to explain complex interactions.

2) Optimal Feedback Control: A different model applied
to human movement control postulates that humans control
their movements by optimizing certain objectives such as
minimal effort [24]. Behavioral observations such as smooth-
ness and compliance in physical interactions result from
optimally adjusted feedback gains [41] obviating the need for
a pre-planned trajectory (Fig. 2B). In this optimal feedback
control (OFC) framework, human control is approximated by
a linear quadratic Gaussian (LQG) controller that includes
the noise characteristics of the neuromuscular system [25].

The optimal controller minimizes the quadratic cost function:

J =

N−1∑
t=0

(
xTt Qtxt + uTt Rtut

)
+ xTNQNxN , (9)

subject to the constraint:

xt+1 = Atxt + Bt (I + εt)ut + ξt, (10)

where x ∈ Rn is the state vector, and ξ and εu represent
additive and control-dependent noise terms, respectively. It
is further assumed that the states can only be estimated from
the d-step-delayed sensory information that is affected by
additive (ω) and state-dependent (εx) noise:

yt = Ht (I + εt)xt−d + ωt. (11)

The linear state-space model for the cup-and-ball system is:

xt =
[
yt, φt, ẏt, φ̇t, Ft

]T
(12)

A =


0 0 1 0 0
0 0 0 1 0
0 mg

α 0 0 1/α
0 −g

l (1 + Gm
α ) 0 0 −G

lα
0 0 0 0 −1/τ

 (13)

B = [0, 0, 0, 0, 1/τ ]
T (14)

H = In×n (15)

which needs to be time-discretized (Euler integration with
time-step δt =10 ms). The fifth state in this state space
represents an equivalent muscle force with dynamics approx-
imated by a first-order filter of the scalar neural input u with
time constant τ = 30 ms [42]. The shorthand variable is
defined as α = m+M −mG for the isolated cup-and-ball
system. However, to be consistent with prior models in the
human literature, an equivalent arm mass was added to the
cup (Fig. 2E), so that the input represents muscular effort
rather than interaction force; i.e., α = m+(M +Ma)−mG
with Ma = 4 kg [26] as the equivalent arm mass.

When modeling human motor actions, OFC often mini-
mizes the control effort (approximating neuromuscular ac-
tivity) and the kinematic error from the target [25]. Thus,
the positive semi-definite matrices in the objective functions
(9) are defined as follows for the cup-and-ball system:

Qt = Diag
([

0, 102 (rad−1), 0, 0, 0
])
, ∀t 6= N (16)

QN = Diag
([

105 (m−1), 0, 105 (sm−1), 0, 0
])

(17)

Rt = 1 (N−1), ∀t (18)

One limitation of this OFC formulation is that state
constraints to mimic the task instruction of ‘not losing the
ball’ cannot be added explicitly. As a proxy, a small penalty
term for the ball angle (second state) was included in (16)
to discourage large ball angles during the motion. The result
of this OFC model is an optimal control law in the form
of feedback gain u∗t = Ltx̄t, which drives the cup-and-ball
system to the target. It only uses the full-state feedback that
is estimated from the delayed sensory information (Fig. 2E).
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Fig. 2: Core models in human motor control (A-C), their implementations for the cup-and-ball system (D-F), and two models combining
dynamic primitives with optimal feedback control to generate zero-force trajectories (G,H). A. Movements minimize jerk, or maximize
smoothness in kinematic space. B. Movements are generated via optimally tuned feedback loops. C. Movements evolve as stable trajectories
according to attractor dynamics. D. The cup is driven with a feed-forward minimum-jerk trajectory. E. An optimal feedback controller
that minimizes effort. F. Cup movements are generated by a feed-forward minimum-jerk trajectory with an impedance primitive. G. The
zero-force trajectory control model that minimizes jerk. H. The zero-force trajectory controller that minimizes effort.

Although the OFC model has successfully captured several
characteristics of human reaching [41], it cannot integrate
task features inherent to transporting a ‘cup-of-coffee’ (see
Results), necessitating further modifications.

3) Dynamic Primitives for Physical Interactions: Dy-
namic motion primitives (DMPs) have been used success-
fully in robotics for trajectory planning and imitation learning
[33], [34], [43], [44]. For human motor control, Sternad and
colleagues showed that discrete and rhythmic movements and
their combinations are well accounted for by discrete fixed-
point and limit-cycle attractor dynamics [38], [39]. However,
for physical interactions mechanical impedance is needed
to augment the attractor dynamics, [45] and was added as
a third primitive [40] (Fig. 2C). Importantly, the submove-
ments and oscillators (for discrete and rhythmic movements,
respectively) are stable attractors that drive the unrestricted
movements. In the case of physical interaction, mechanical
impedance is included and discrete and rhythmic components
drive the zero-force trajectories [46]. In robotics applica-
tions, stable trajectory attractors are often constructed using
canonical forcing terms [34] independent of the interaction
dynamics. In human motor control, proxies for generating the
zero-force trajectory have been used, specifically minimum-
jerk submovements for discrete movements and sinusoidal
oscillations for rhythmic movements [47].

When adding a linear spring-and-damper system with
parameters kp = 40 N/m and kd = 50 Ns/m [19] and its
zero-force trajectory, yzft, (Fig. 2F), the resulting system
dynamics equations are:

(M +m)ÿ = −mlφ̈+kp(yzft−y)+kd(ẏzft− ẏ)+Fpert, (19)

lφ̈ = −gφ−Gÿ. (20)

The dynamic primitives framework has so far remained
unspecific about how the zero-force trajectories are generated
for more complex interactive tasks. The zero-force trajectory
may be represented by the pre-planned minimum-jerk trajec-
tory of (8), or be calculated through other processes. In the
present work (Fig. 2F), a minimum-jerk submovement (8)

was used as yzft in (19) to drive the system to target in the
specified time.

D. Proposed Model: Zero-Force-Trajectory Control

The results revealed several insufficiencies of these exist-
ing models. To address these shortcomings, a novel model
is proposed to capture the features of the human behavior
as measured experimentally. The zero-force trajectory in
the dynamic primitives framework needs to be generated
in accordance with the dynamics of the object and the
requirements of the task—a missing feature in the existing
formulation. Optimal feedback control can fill this void by
generating a dynamic attractor landscape from optimally
tuned feedback gains that produces the zero-force trajectory.
Note that in the absence of interactions, the zero-force trajec-
tory and the actual hand path coincide, and the model reduces
to the original OFC that produces a smooth minimum-jerk
velocity profile.

In tailoring the OFC model to generate zero-force trajecto-
ries, we build on the model in (19) that includes mechanical
impedance. Instead of assuming a pre-planned zero-force
trajectory, yzft is now produced online by the optimal
feedback controller. Two features of this approach need to
be highlighted: first, the dynamics of the object are taken
into account in the formation of the zero-force trajectory;
second, the trajectory is generated by a dynamic attractor
(via feedback gains) and the trajectory itself changes in re-
sponse to the evolving system dynamics, including potential
perturbation. In this modification there are two choices for
the objective function: (1) maximize the smoothness of the
zero-force trajectory (Fig. 2G), or (2) minimize the effort
generating the zero-force trajectory (Fig. 2H).

1) Zero-Force Trajectory Control with Optimal Effort:
The most direct modification is to implement an effort-
minimizing optimal feedback controller in the novel frame-
work. OFC sets the optimal forces driving the impedance
operator (Fig. 2F). Note that a non-zero mass is needed
between the driving force and impedance operator, which is
assumed to be the same as Ma for consistency with previous



models. In this effort-minimizing controller, the terms of the
cost function are kept the same as (16)-(18), and the state-
space equations become:

xt =
[
yt, φt, ẏt, φ̇t, Ft, yzft, ẏzft

]T
(21)

A = (22)

0 0 1 0 0 0 0
0 0 0 1 0 0 0
−kp
α

mg
α

−kd
α 0 0

kp
α

kd
α

kpG
lα

−g
l (1 + Gm

α ) kdG
lα 0 0

−kpG
lα

−kdG
lα

0 0 0 0 −1/τ 0 0
0 0 0 0 0 0 1
kp
Mh

0 kd
Mh

0 0
−kp
Mh

−kd
Mh


B = [0, 0, 0, 0, 1/τ, 0, 0]

T (23)
H = In×n (24)

2) Zero-Force Trajectory Control with Optimal Smooth-
ness: Inspired by the smoothness in kinematic space during
unperturbed reaching movements, the OFC model is modi-
fied to maximize the smoothness of the zero-force trajectory
(minimizing jerk) instead of minimizing the effort. Note that
in the absence of physical interaction, this model reduces
to the original minimum-jerk model, but without specifying
the trajectory a priori as a function of time. The objective of
maximum smoothness is achieved by substituting the input
neural command with the input jerk profile (u = d

dt (ÿzft))
and considering ÿzft as another state:

xt =
[
yt, φt, ẏt, φ̇t, yzft, ẏzft, ÿzft

]T
(25)

A = (26)

0 0 1 0 0 0 0
0 0 0 1 0 0 0
−kp
α

mg
α

−kd
α 0

kp
αMh

kd
αMh

0
kpG
lα

−g
l (1 + Gm

α ) kdG
lα 0

−kpG
lα

−kdG
lα 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


B = [0, 0, 0, 0, 0, 0, 1]

T (27)
H = In×n (28)

The state penalty matrix in the objective function Qt

in (16) and (17) remains unchanged. However, the control
penalty is set to Rt = 0.1 s3/m to have comparable orders
of magnitude of terms in the cost function.

E. Quantification of Models’ Goodness-of-Fit

Normalized root-mean-squared (RMS) error between a
simulated trajectory and the data was calculated as

eℵ = RMS(ℵsim − ℵdata)/RMS(ℵdata) (29)

for variables ℵ ∈ {y, ẏ, φ, φ̇, Finter}. A models’ prediction
error was then defined as the average of eℵ for all variables.
Variability in the data was also quantified using (29) by

TABLE I: Models’ goodness-of-fit to participants’ data

Rigid Cup-and-ball Cup-and-ball perturbed

FF min-jerk 28.2% 51.9% 68.2%
FF min-jerk+imp 33.7% 45.6% 48.1%

OFC min-effort 33.8% 50.6% 53.3%
ZFT min-effort 27.9% 48.1% 47.2%

ZFT min-jerk 26.5% 24.9% 33.0%
Data variability 26.7% 23.8% 28.2%

replacing ℵsim with mean(ℵdata), which gave the lower-
bound for achievable prediction error.

III. RESULTS

A. Results for Unperturbed Movements

When moving a rigid object, participants exhibited the
expected bell-shaped velocity profiles as no additional ball
forces acted on the hand (Fig. 3A). Not surprisingly, when
manipulating the cup-and-ball system, subjects’ trajectories
visibly deviated from these smooth profiles (Fig. 3B). After
a relatively rapid increase the velocity remained close to
constant, followed by a deceleration to stop at the target.
Even though participants encountered the same perturbation
repeatedly, there was no visible improvement across the 100
trials in any of the conditions.

The smooth bell-shaped velocity profile and interaction
forces in the rigid-object condition are well represented
by all models (overlaid in Fig. 3A). Further, all models
exhibit prediction errors that are close to the the average
trial-by-trial differences in participants’ data (TABLE. I),
rendering them indistinguishable in such simple tasks. Once
the ball dynamics is included, the modeled trajectories start
to diverge (Fig. 3B, TABLE. I). By design, the feed-forward
minimum-jerk model does not adapt to the ball dynam-
ics. When this feed-forward model includes an impedance
operator with biologically-plausible values of stiffness and
damping, the force from the rolling ball is not large enough
to capture the pattern of human movements. However, these
small ball forces affect the behavior of the minimum-effort
OFC model, and lead to much larger speed modulations than
those observed in human behavior. Specifically, as the ball
rolls forward and decelerates the cup, the OFC model does
not attenuate this deceleration as it minimizes effort. These
simulation results resemble those of the OFC where the zero-
force trajectory is driven by minimal effort.

In contrast, the zero-force trajectory controller with opti-
mal smoothness penalizes variations in the cup trajectory
when encountered with ball forces; consequently, it most
closely resembles the experimental profile of cup velocity.
Furthermore, due to the underactuated ball dynamics, subtle
differences in cup velocity cause large changes in ball angle
and interaction forces. This zero-force trajectory controller
also reproduces profile features in ball angle and interaction
forces, resulting in the lowest prediction error (TABLE. I).

B. Results for Perturbed Cup-and-Ball Movements

Sudden impulse-like perturbations were used to further
elicit distinctive characteristics in human behavior to identify



Fig. 3: Human data and simulation results. Gray lines represent one exemplary participants’ data, and colored lines are model predictions.
Cup velocity, interaction force (between hand and cup), and ball angle are shown. A. Rigid object manipulation: All models predict
bell-shaped velocity profiles as observed in human data and recreate interaction forces equally well. B. Cup-and-ball manipulation: Only
the zero-force trajectory controller with optimal smoothness predicts the cup velocity, ball angle, and interaction force profiles that match
human behavior. C. Cup-and-ball manipulation with external perturbation: Models without hand impedance (effort-minimizing OFC and
FF minimum-jerk) do not capture compliant behavior at perturbation and exhibit small velocity change and large spike in interaction
force. The zero-force trajectory controller with optimal smoothness fits the human data best.

the controller. When experiencing a resistive perturbation
the participant’s data in Fig. 3C shows large cup decel-
erations that are followed by a smooth recovery within
approximately 200 ms. Evidently, the models without an
impedance do not capture this response to perturbations.
The OFC minimum-effort model responds with very ‘stiff’
behavior to the perturbation, characterized by a small change
in velocity, reduced velocity recovery, and large transfer of
the perturbation force to the hand (highlighted in the insets in
Fig. 3C). The models that include impedance (the two zero-
force trajectory controllers and the feed-forward minimum-
jerk model with impedance) show compliant responses that
are closer to human behavior. This result suggests that
feedback gains alone cannot account for arm stiffness, as
suggested before [48]. Similar to the unperturbed condition,
the dynamics-informed zero-force trajectory controller with
optimal smoothness matches the human data most closely.

IV. DISCUSSION

This study investigated human motor control of a complex
underactuated object to reveal control priorities that may
inform the development of more dexterous robots. Human
experiments on a task inspired by ‘transporting a cup of
coffee’ rendered kinematic data that were used as basis to
test a range of extant and novel control models. Previous
studies of the same cup-and-ball system showed that humans
prioritized alternative objectives, such as dynamic stability
[18], [49] and predictability and safety margins [13], [16],
[19], [50]. To utilize such insights in robot control design,
it is necessary to isolate the key features of the human
movement controller in a generative model that can repro-
duce human-like behavior in dynamically complex tasks.
Our results showed that when moving a rigid object, the
human trajectories displayed smooth bell-shaped velocity

profiles that were accounted for by all models. However, the
interaction with the cup-and-ball system resulted in forces
that acted on the hand and needed to be compensated. These
perturbed profiles presented noticeably greater challenges for
the models, not only for the feed-forward models, but also
for optimal feedback control that minimized effort. When
exposed to additional external perturbations, the candidate
models differentiated themselves even further.

The model that best replicated human behavior was the
zero-force trajectory controller with optimal smoothness that
integrated three concepts. The first was the physical inter-
action via mechanical impedance, which has been shown
critical for the stability of human object manipulation [51],
[52]. The second concept was an optimal feedback controller
that was used to form stable zero-force trajectories, which
drove the system toward the target without requiring a pre-
planned trajectory. The third concept, minimizing jerk, was
the objective in the optimal controller.

The relevance of mechanical impedance to the optimal
control framework has been demonstrated before in an open-
loop context in musculo-skeletal simulations [53], [54]. Fur-
thermore, Dingwell and colleagues proposed a dynamically-
constrained minimum-jerk model for the manipulation of
a linear underactuated object [10] which, unlike the zero-
force trajectory controller, was formulated as a feed-forward
trajectory planning. Lastly, the notion of creating a dy-
namic attractor for trajectory planning is widely explored
in imitation learning [55]. However, the proposed zero-force
trajectory controller creates these attractors autonomously via
optimally tuned gains instead of human demonstration. The
proposed model is an important first step towards identifying
the architecture of the human controller and capturing human
dexterity in a mathematical form.
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[1] G. Ganesh, A. Albu-Schäffer, M. Haruno, M. Kawato, and E. Burdet,
“Biomimetic motor behavior for simultaneous adaptation of force,
impedance and trajectory in interaction tasks,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 2705–2711,
2010.

[2] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal
cord model.” Science (New York, N.Y.), vol. 315, no. 5817, pp.
1416–20, 3 2007.

[3] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
pp. 1082–1085, 2005.

[4] A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp.
1115–1130, 5 2014.

[5] C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus,
“Dynamic control of soft robots interacting with the environment,”
in 2018 IEEE International Conference on Soft Robotics (RoboSoft).
IEEE, 4 2018, pp. 46–53.

[6] F. Angelini, C. Della Santina, M. Garabini, M. Bianchi, and A. Bicchi,
“Control architecture for human-like motion with applications to
articulated soft robots,” Frontiers in Robotics and AI, vol. 7, no.
September, pp. 1–17, 2020.

[7] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 1,
pp. 172–188, 1 2018.

[8] F. F. Khalil and P. Payeur, “Dexterous robotic manipulation of
deformable objects with multi-sensory feedback - a review,” in Robot
Manipulators Trends and Development. InTech, 3 2010, no. March
2010.

[9] D. McConachie, M. Ruan, and D. Berenson, “Interleaving
planning and control for deformable object manipulation.” Springer
International Publishing, 2020, pp. 1019–1036.

[10] J. B. Dingwell, C. D. Mah, and F. A. Mussa-Ivaldi, “Experimentally
confirmed mathematical model for human control of a non-rigid
object,” Journal of Neurophysiology, vol. 91, no. 3, pp. 1158–1170,
2004.

[11] M. Svinin, I. Goncharenko, V. Kryssanov, and E. Magid, “Motion
planning strategies in human control of non-rigid objects with
internal degrees of freedom,” Human Movement Science, vol. 63, no.
December 2018, pp. 209–230, 2019.

[12] A. J. Nagengast, D. A. Braun, and D. M. Wolpert, “Optimal control
predicts human performance on objects with internal degrees of
freedom,” PLoS Computational Biology, vol. 5, no. 6, 2009.

[13] C. J. Hasson, T. Shen, and D. Sternad, “Energy margins in dynamic
object manipulation,” Journal of Neurophysiology, vol. 108, no. 5, pp.
1349–1365, 2012.

[14] M. C. Nah, A. Krotov, M. Russo, D. Sternad, and N. Hogan,
“Dynamic primitives facilitate manipulating a whip,” in 2020 8th
IEEE RAS/EMBS International Conference for Biomedical Robotics
and Biomechatronics (BioRob). IEEE, 11 2020, pp. 685–691.

[15] A. Krotov, “Human control of a flexible object: hitting a target with
a bull-whip,” Master’s thesis, Northeastern University, 2020.

[16] B. Nasseroleslami, C. J. Hasson, and D. Sternad, “Rhythmic manip-
ulation of objects with complex dynamics: predictability over chaos,”
PLoS Computational Biology, vol. 10, no. 10, 2014.

[17] S. Bazzi, J. Ebert, N. Hogan, and D. Sternad, “Stability and
predictability in human control of complex objects,” Chaos, vol. 28,
no. 10, 2018.

[18] S. Bazzi and D. Sternad, “Robustness in human manipulation of
dynamically complex objects through control contraction metrics,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2578–2585,
4 2020.

[19] R. Nayeem, S. Bazzi, N. Hogan, and D. Sternad, “Transient behavior
and predictability in manipulating complex objects,” pp. 10 155–
10 161, 2020.

[20] H. Guang, S. Bazzi, D. Sternad, and N. Hogan, “Dynamic primitives
in human manipulation of non-rigid objects,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2019-May,
pp. 3783–3789, 2019.

[21] P. Morasso, “Spatial control of arm movements,” Experimental Brain
Research, vol. 42, no. 2, pp. 223–227, 4 1981.

[22] T. Flash and N. Hogan, “The coordination of arm movements:
an experimentally confirmed mathematical model,” The Journal of
Neuroscience, vol. 5, no. 7, pp. 1688–1703, 7 1985.

[23] T. Flash and E. Henis, “Arm trajectory modifications during reaching
towards visual targets,” Journal of Cognitive Neuroscience, vol. 3,
no. 3, pp. 220–230, 1991.

[24] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory
of motor coordination,” Nature Neuroscience, vol. 5, no. 11, pp.
1226–1235, 11 2002.

[25] E. Todorov, “Stochastic optimal control and estimation methods
adapted to the noise characteristics of the sensorimotor system,”
Neural Computation, vol. 17, no. 5, pp. 1084–1108, 5 2005.

[26] J. Izawa, T. Rane, O. Donchin, and R. Shadmehr, “Motor adaptation
as a process of reoptimization,” Journal of Neuroscience, vol. 28,
no. 11, pp. 2883–2891, 3 2008.

[27] D. Liu and E. Todorov, “Evidence for the flexible sensorimotor strate-
gies predicted by optimal feedback control,” Journal of Neuroscience,
vol. 27, no. 35, pp. 9354–9368, 2007.

[28] S.-H. Yeo, D. W. Franklin, and D. M. Wolpert, “When optimal
feedback control is not enough: feedforward strategies are required for
optimal control with active sensing,” PLOS Computational Biology,
vol. 12, no. 12, p. e1005190, 12 2016.

[29] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines
motor planning,” Nature, vol. 394, no. 6695, pp. 780–784, 8 1998.

[30] J. Diedrichsen, R. Shadmehr, and R. B. Ivry, “The coordination
of movement: optimal feedback control and beyond,” Trends in
Cognitive Sciences, vol. 14, no. 1, pp. 31–39, 1 2010.

[31] D. Sternad, W. J. Dean, and S. Schaal, “Interaction of rhythmic
and discrete pattern generators in single-joint movements,” Human
Movement Science, vol. 19, no. 4, pp. 627–664, 10 2000.

[32] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical systems
as movement primitives,” International Conference on Humanoid
Robotics Cambridge MA, vol. 38, no. 2, p. 117–124, 2001.

[33] S. Schaal, “Is imitation learning the route to humanoid robots?”
Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 6 1999.

[34] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2 2013.

[35] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings
2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 2, no. May. IEEE, 2002, pp. 1398–1403.

[36] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 9 2011, pp. 365–371.

[37] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific
generalization of discrete and periodic dynamic movement primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 10 2010.

[38] R. Ronsse, D. Sternad, and P. Lefèvre, “A computational model for
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