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Abstract—Modeling of deformable objects is essential for a
robot to successfully interact with the complex objects present
in the human world. Traditional methods developed to model
and control rigid objects are not viable for robotic manipula-
tion of flexible objects. Newly introduced techniques to model
deformable objects typically require long computation times
either to develop or to deploy the model during run time.
This study introduced a data-driven approach using a nonlinear
autoregressive neural network with exogenous inputs (NARX)
to obtain an inverse model of a flexible object that estimates
the appropriate inputs to the controller based on a desired
system output. The efficacy of this approach is demonstrated
at the example of manipulating a whip. We show that the NARX
network can estimate appropriate inputs to the whip handle to
generate movements of the tip of the whip along a user-defined
trajectory. With training on 50 seconds of data, it achieves ∼90%
accuracy in a new test condition.

I. INTRODUCTION
As robots enter our work spaces and homes, they increas-

ingly come in contact with a variety of complex objects that
have novel dynamical behaviors. Modeling and control of
deformable objects is necessary for a robot to successfully
act and interact in the human environment. Over the past
few decades, many algorithms have been introduced to model
deformable objects using finite-element modeling (FEM) [6],
deep reinforcement learning (DeepRL) [2], and physics-based
modeling [4]. These techniques provide adequate models of
flexible objects, but the computation times needed to develop
(DeepRL models) or use the models at run time (FEM and
physics-based models) are extremely long. This toll on com-
putational resources makes them infeasible for real-time mod-
eling of novel deformable objects in robot control. In contrast,
humans can learn to manipulate objects with novel dynamics
within a few iterations [3]. Therefore, it has been argued that
humans may not need a physically accurate internal model to
interact with objects for their movement control [1][5].

More recent approaches have been proposed that can model
novel objects with shorter computation time. For example,
Yan et al. [8] introduced a vision-based state estimation
algorithm to model and manipulate a flexible string. Nair
et al. [7] succeeded to train a robot to manipulate a rope with
only few human demonstrations. While these studies made
important advances in modeling deformable objects, they
have been limited to cases where the object makes relatively
slow movements. Quick and possibly even chaotic movements
are fundamental kinematic characteristics of moving flexible

objects, such as waving a flag or cracking a bullwhip.
This study proposes a data-driven approach to rapidly

develop a 3-dimensional model of a deformable object. We
used a nonlinear autoregressive neural network with exogenous
inputs (NARX) to create an inverse model of a simulated bull-
whip. The whip has 22 degrees of freedom (DOFs), with only
2 actuated DOFs at the handle. This makes the whip highly
underactuated, resulting in an ill-posed inverse problem, where
multiple input trajectories may yield the desired outcome.

We show that with only a small training data set, the NARX
network can estimate an appropriate input trajectory to the
whip handle to drive the tip of the whip close to a user-defined
trajectory. Unlike deep neural networks used in DeepRL, our
proposed algorithm only has 2 layers and therefore requires
significantly shorter training and computation time. Hence, this
approach makes it feasible to acquire a model online while
controlling the complex object.

II. METHOD
A. Simulated Whip

A 1.8m long whip model with a total mass of 2.8kg was
generated using the Simscape Multibody Toolbox in MATLAB
R2019b (MathWorks, Natick, MA). As shown in Fig. 1A, the
whip was modeled as 10 rigid cylindrical links, with each
link-pair connected by 2 orthogonal revolute joints. To mimic
the tapering of a real whip, the stiffness, damping, and mass
of the system decreased linearly from the handle to the tip.
Fig. 1B lists the stiffness, damping, and mass of the sections
of the whip. These parameters were chosen through trial and
error to elicit whip-like behavior.

The base of the whip handle was held stationary and the
input to the model were the azimuth and altitude angles of

Fig. 1. Simulated whip in MATLAB Simscape environment. A: Whip shape
when the handle is held horizontally. B: Mechanical properties of the whip.



the whip handle. Based on the user inputs to the handle, the
Simscape’s physics engine simulated the behavior of the whip
and the 3D positions of the 10 links of the whip were sampled
at 100 Hz.

B. NARX Network Structure

The NARX network was implemented using the Deep
Learning Toolbox from MATLAB R2019b (MathWorks, Nat-
ick, MA). It is a 2-layer neural network consisting of a hidden
layer and an output layer as shown in Fig. 2. The hidden
layer used a symmetric sigmoid activation function, while the
output layer used a linear activation function. The Bayesian
regularization backpropagation was implemented with the
function (trainbr) as the optimization algorithm to update
the weights and biases of the network.

The NARX network consisted of 5 neurons, 3-step input
delays, and a 1-step feedback delay. The hidden layer takes
in the known desired inputs, u(t), with user-defined input
delays, ID, as well as previously estimated values of the
desired outputs, ŷ(t), with user-defined feedback delays, FD,
to estimate future values of the outputs.

C. Training and Testing of the NARX Network

The 22 DOF of the whip included 2 actuated DOFs: the
handle’s azimuth and altitude angle. The azimuth trajectory
for both the training and testing stages was a sine function
with 0.26 Hz frequency and 25 deg amplitude. The altitude
trajectory was a sine function with 0.46 Hz frequency and a
20 deg amplitude for the training data and a 40 deg amplitude
for the testing data set. These input parameters were chosen
through trial and error as they prevented the whip from folding
onto itself; folding caused the simulator fail to converge. The
training and testing data sets consisted of 50 s, and 2 s of
whip data, respectively.

Fig. 3 shows the flow chart used to develop and evaluate
the inverse model of the whip. The pre-defined handle inputs
for the training and testing data sets were used to generate the
behavior of the whip using Simscape Multibody. In the training
stage, the NARX model used the training data to estimate the
handle inputs that drove the whip tip along a desired trajectory.
In the testing stage, the trained NARX model estimated the
appropriate handle trajectories for the whip tip to closely
follow the desired testing data set trajectory.

In the evaluation stage, the estimated handle trajectories
were passed to Simscape to simulate the response of the whip.
The accuracy of the model was evaluated by calculating the
Euclidean difference between the 3D tip trajectory from the
simulation and the test data, normalized over the maximum
tip displacement. Note, only the tip of whip and not the links
was used for evaluation.

Fig. 2. NARX network architecture.

Fig. 3. Flow chart used to estimate the appropriate handle angle inputs to
manipulate the whip along the user-defined trajectory.

Fig. 4. A: 2-second Euclidean trajectory of the whip tip simulated using
handle inputs from the training data set (green), testing data set (blue), and
the NARX model estimate (red). B: Normalized Euclidean error of the whip
tip trajectory obtained from the NARX model.

III. RESULTS & DISCUSSION

Fig. 4A shows a 2-second sample of the simulated Euclidean
trajectory of the whip tip from the training (green) and the test-
ing (blue) data, as well as the simulation result of the estimated
NARX-model handle inputs (red line). Fig. 4B shows the
normalized Euclidean distance between the tip of the whip and
the NARX-model estimate compared to the desired trajectory
from the testing data set. The mean normalized Euclidean
error using the NARX model was 12%. Given a user-defined
trajectory, the model output had an average error of 0.12 m
for every 1 m movement of the tip of the whip.

Fig. 4A shows an example of the nonlinear behavior of the
whip. Even though the handle input trajectory of the training
and testing data sets were very similar, the resulting behavior
of the whip was significantly different. This could explain
the increase in the Euclidean error observed in Fig. 4B as
time progresses. Small differences in the input can result in
different behaviors of the whip over time, demonstrating the
challenge of inverse modeling of deformable objects. Despite
these significant difficulties, our proposed NARX modeling
approach made it possible to obtain a solution to the ill-posed
inverse model problem with nearly 88% accuracy.

The additional noteworthy benefit of this approach is its
extremely short computation time to arrive at this solution.
The NARX model took approximately 5 minutes to train on
an Intel Core i7-8700K CPU, and the trained model could
estimate new whip handle inputs in less than 1 s. These
fast computations make it possible for robots to develop and
modify models of deformable objects almost in real time while
they interact with new and unfamiliar objects.

Future work will go beyond the simplified handle move-
ments and demonstrate the efficacy of our approach in the
task of hitting a target with the whip. This challenging task
involves extremely fast hand actions generating complex whip
movement patterns that can further differentiate our approach
from existing techniques.
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