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Abstract

Humans dexterously interact with a variety of objects, including those with complex internal

dynamics. Even in the simple action of carrying a cup of coffee, the hand not only applies a

force to the cup, but also indirectly to the liquid, which elicits complex reaction forces back on

the hand. Due to underactuation and nonlinearity, the object’s dynamic response to an action

sensitively depends on its initial state and can display unpredictable, even chaotic behavior.

With the overarching hypothesis that subjects strive for predictable object-hand interactions,

this study examined how subjects explored and prepared the dynamics of an object for sub-

sequent execution of the target task. We specifically hypothesized that subjects find initial

conditions that shorten the transients prior to reaching a stable and predictable steady state.

Reaching a predictable steady state is desirable as it may reduce the need for online error

corrections and facilitate feed forward control. Alternative hypotheses were that subjects

seek to reduce effort, increase smoothness, and reduce risk of failure. Motivated by the task

of ‘carrying a cup of coffee’, a simplified cup-and-ball model was implemented in a virtual

environment. Human subjects interacted with this virtual object via a robotic manipulandum

that provided force feedback. Subjects were encouraged to first explore and prepare the cup-

and-ball before initiating a rhythmic movement at a specified frequency between two targets

without losing the ball. Consistent with the hypotheses, subjects increased the predictability

of interaction forces between hand and object and converged to a set of initial conditions fol-

lowed by significantly decreased transients. The three alternative hypotheses were not sup-

ported. Surprisingly, the subjects’ strategy was more effortful and less smooth, unlike the

observed behavior in simple reaching movements. Inverse dynamics of the cup-and-ball sys-

tem and forward simulations with an impedance controller successfully described subjects’

behavior. The initial conditions chosen by the subjects in the experiment matched those that

produced the most predictable interactions in simulation. These results present first support

for the hypothesis that humans prepare the object to minimize transients and increase stabil-

ity and, overall, the predictability of hand-object interactions.
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Author summary

Humans interact with objects that have complex dynamics every day. One example is

picking up a cup filled with coffee to drink: the hand applies a force not only to the cup,

but also indirectly to the liquid, which in turn acts back on the hand. These interactions

can quickly become unpredictable, i.e., making it difficult for a person to control the

potentially chaotic interactions in real-time. When starting such an action from rest, the

object experiences start-up dynamics, or transients, that partly depend upon the initial

conditions. We examined how subjects learn to identify initial conditions to shorten tran-

sients and make the ensuing interaction dynamics stable and predictable. Using a simpli-

fied model of the cup of coffee, a 2D cup with a rolling ball inside and moving on a

horizontal line, subjects were encouraged to prepare the object dynamics to find the best

initial conditions prior to starting a continuous transport task. Experimental and model-

ing results showed that with practice subjects converged to a small set of initial conditions,

which decreased their transient durations, and achieved increasingly predictable interac-

tions. The typical objectives in unconstrained tasks—to decrease effort and increase

smoothness—could not be supported.

Introduction

Functional interaction with objects—tool use—is essential in daily life and is regarded as a

foundation of our evolutionary advantage. Manipulation of objects requires contact and inter-

action that present control challenges beyond those in unconstrained reaching and pointing

that have been the mainstay of motor neuroscience. Studies of how humans manipulate objects

have focused on tasks such as grasping, lifting, and transporting an object, often including

analysis of the forces applied by the fingers onto the object [1–5]. However, typically in these

studies the object is a rigid body, and the subject holds, transports, and places this rigid object

from one point to another. This type of object manipulation is relatively simple compared to

the variety of the interactions that occur in real life. Objects can have complex geometric con-

figurations and internal degrees of freedom that give rise to complex interaction dynamics that

are absent in simple transport and placing of solid objects. Examples of objects with complex

interactions are painting with a paint brush, pouring water from a bottle, or leading a cup filled

with coffee to one’s mouth to drink. In the latter example, the hand applies a force not only to

the cup, but also indirectly to the liquid which, in turn, acts back onto the hand, potentially

perturbing its trajectory. Therefore, the hand must make subtle adjustments to avoid spilling

the coffee. The challenges of such complex interactions become apparent in individuals with

neurological disorders, where small disturbances can easily lead to failure, making essential

daily tasks, such as self-feeding or dressing, a difficult endeavor.

Relatively few studies in motor neuroscience have gone beyond rigid objects to explore the

control strategies with more complex objects, i.e., interactions that involve intrinsic degrees of

freedom that can create unstable object dynamics. The paradigms involved balancing a pole or

transporting or compressing a mass spring system, where the controller must stabilize an

inherently unstable system. In pole balancing, the classical control problem of stabilizing an

inverted pendulum, human trajectories were modeled with a variety of controllers, such as

intermittent, continuous, or predictive control with forward or inverse models [6–8]. Nonlin-

ear time-series analysis of the human trajectory has focused on the role of noise and delays to

distinguish between continuous or intermittent control [9–11]. One study examined the task
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of compressing a buckling spring and modeled human task performance with a simple

dynamic model displaying a subcritical pitchfork bifurcation [12]. Another set of experiments

examined how subjects transported a mass-spring system, an underactuated object with linear

internal dynamics, to a target. These latter studies posited optimization criteria, such as gener-

alized kinematic smoothness [13], minimum effort and maximum accuracy [14], and mini-

mum acceleration with constraints on the center of mass [15]. However, while optimization

approaches may be insightful for such highly controlled tasks, when interacting with more

complex, nonlinear, and potentially chaotic object behavior, such optimization approaches

will be challenged as prediction of this evolving dynamics is essential [16]. Hence, the question

of how humans interact with objects with potentially unpredictable dynamics is still an open

research problem.

To explore interaction with a dynamically complex object, our group has developed an

experimental paradigm that investigated the transport of a ‘cup of coffee’, modeled as a ball

rolling in a cup [17–19]. Implementing this model system in a virtual environment, subjects

interact with the virtual object via a haptic robotic interface, moving the cup on a horizontal

line; the rolling ball represents the sloshing coffee acting back onto the cup and hand. The

dynamics of this underactuated object is complex and may evolve into chaos, i.e., behavior

becomes unpredictable even in the purely deterministic system [20,21]. Two previous studies

investigating continuous interactions with this object showed that subjects seek to make the

interaction dynamics predictable, even at the expense of exerting higher forces [19,22]. To sim-

plify the demands on internal knowledge and prediction, another study explored how dynamic

primitives may be used for transporting a cup to an endpoint where internal ball oscillations

are minimized [23]. Bazzi and Sternad demonstrated in a point-to-point translation that sub-

jects sought to attain stability, evaluated by contraction analysis [24–26]. Establishing predict-

ability through stability is reasonable, as predicting and reacting to interaction forces in real

time is extremely difficult due to long delays, ubiquitous noise, and limited bandwidth in the

human sensorimotor system [27–29]. In such scenarios, continuous feedback-based control

strategies, including optimal feedback control, may be challenged and the demands on predic-

tive computations are high. Therefore, dynamic stability is beneficial as small perturbations or

errors need not be explicitly corrected as the system returns to the attractor by itself. Common

to all these studies is that subjects seek to make the interactions more predictable.

In all previous studies, subjects started the movement task with both the cup and the ball at

rest. This significantly constrained the cup-and-ball dynamics during the initial part of the

trial and, when moving the cup-and-ball continuously, subjects often required a significant

amount of time to reach a steady state with predictable cup and ball dynamics. In daily behav-

ior it is not uncommon that humans ‘initialize’ their objects to prepare for a task, especially

when the object dynamics are unknown. Humans may first explore the internal dynamics by

‘jiggling’ the object prior to starting the intended movements. Such preparation of an object

can be observed in many athletic routines, such as bouncing the ball before a tennis serve or

preparing a diving board before launching the dive [30]. This study investigated how subjects

explore and prepare the object prior to executing the target movement.

In general, a dynamical system starts from initial conditions and passes through a transient

state before reaching a steady state. The duration of the transient depends on the initial condi-

tions and some responses may never settle and result in chaotic behavior [31–33]. If given the

chance to prepare an object’s dynamics prior to a task, can subjects find initial conditions that

generate ‘simpler’ dynamics, evident in shorter transients and a higher degree of dynamic sta-

bility? These two aspects would preempt potentially chaotic behavior and enhance predictabil-

ity. This study pursued the overall hypothesis that preparatory actions simplify the subsequent

dynamic interactions and make them predictable.
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Subjects were instructed to move a cup with a ball rolling inside and to settle into a suffi-

ciently fast and challenging back-and-forth movement paced by a metronome. At the begin-

ning of each trial, subjects could freely explore the dynamics of the object by “jiggling” the cup

and ball to find their preferred initial conditions to prepare them for the subsequent rhythmic

movements. We hypothesized that subjects seek to improve predictability in the hand-cup-ball

interactions. As predictability is a broad concept, we separately examined the chosen initial

conditions, the duration of the transient in the 15-s trial, and the stability of the steady state

portion of the trial. We tested the following three specific hypotheses: Hypothesis 1: All subjects

converge to a subset of initial conditions to make the ensuing dynamics more predictable. Two

alternatives are possible: a) all subjects converge to the same subset of initial conditions

afforded by the object; b) subjects find their individually preferred initial conditions. Hypothe-
sis 2: These preferred initial conditions lead to shorter transients that reach a predictable steady

state earlier. Hypothesis 3: The steady state exhibits dynamic stability as this affords robustness

to small perturbations obviating error corrections. To challenge these expectations, three alter-

native hypotheses were formulated that were derived from extant computational studies on

motor control: minimization of expended effort [14,34–37], maximization of smoothness

[13,15], and reduction of risk [38,39].

The experimental results supported the overall hypothesis that subjects indeed increased

predictability of their cup and ball dynamics. Subjects converged to initial conditions, tran-

sients became shorter, and the stability of the steady state increased with practice. In contrast,

none of the alternative hypotheses found support by the data. To further scrutinize these

experimental results, simulations of the cup-and-ball system examined these findings more

specifically. Using inverse dynamic simulations, we identified the subset of initial conditions

that led to more predictable interaction forces. Forward dynamic simulations with a first-

order impedance controller generated solution spaces for these hypothesized objectives that

could be compared with human data. Results showed that subjects converged to the manifold

of initial ball angles that achieved shorter transients, enabling task performers to reach a stable

steady state faster. Surprisingly, this strategy was more effortful and less smooth, unlike the

observed behavior in simple reaching movements. In addition, subjects increased the ‘riski-

ness’ of interactions over their trials. This work presents first evidence that, given the opportu-

nity, subjects learn to prepare the object to simplify subsequent complex object interactions

and make them stable and predictable.

Results

Experimental task

The task of transporting a ‘cup of coffee’ was simplified to moving a two-dimensional arc with

a ball ‘rolling’ inside (Fig 1A and 1B). The system was mechanically equivalent to a suspended

frictionless pendulum attached to a cart moving on a frictionless surface. The ball acted as the

pendulum bob and the cup position corresponded to the cart position; the cup itself was the

semicircular arc that the pendulum bob traversed. The model and its equations of motion are

detailed in the methods. Whenever the ball angle exceeded ±50 deg it would visually ‘spill’

from the cup, resulting in a failed trial.

The cup-and-ball system was implemented in a virtual environment, where subjects moved

the cup via a haptic manipulandum (Fig 1C). At the beginning of each trial, the cup was posi-

tioned in Box A with the ball resting at the bottom of the cup (θ = 0 deg, Fig 1D). Subjects

were instructed to move the cup rhythmically between Box A and Box B, following a metro-

nome without losing the ball. The rim height was 50 deg, so the ball angle had to satisfy: |θ| <

50 deg (Fig 1D). The centers of the two rectangles were at -0.15 and 0.15 m, respectively,
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defining the cup amplitude as 0.30 m. Prior to starting each trial, subjects were encouraged to

explore the cup and ball dynamics by ‘jiggling’ the cup back and forth to best prepare for the

following continuously rhythmic movements. These preparatory movements had no time

limit and were self-paced, i.e., there was no metronome. Once subjects felt ready, they moved

the cup towards the right. Upon entry into Box B, the metronome started, and subjects contin-

ued to move rhythmically, paced at 0.60 Hz for 15 s. The last zero-crossing of cup velocity

before starting the prescribed rhythmic movement marked the end of the preparation interval

and was the moment where initial conditions were determined. Rhythmic movements were

chosen to create continuous movements over some duration on a limited screen. The fre-

quency of 0.60 Hz was chosen as it is close to the natural frequency of the pendulum (0.74 Hz)

that defines the anti-resonance frequency of the cup-and-ball system. Maintaining cup move-

ments close to this frequency is challenging, as shown previously [40].

Fig 2 illustrates the trajectories of cup and ball of a single subject, how initial conditions

were determined, and how the trials were segmented into preparation interval, transients, and

steady state. Fig 2A shows 60 out of 120 trials (every other trial) overlaid and aligned at the last

zero velocity before moving towards Box B; lighter green indicates later trials. Fig 2B shows

cup and ball trajectories of a single trial over a shorter segment to highlight how cup and ball

reached a steady state with in-phase oscillations. To determine the end of the transient, relative

phase between cup and ball was calculated, based on continuous Hilbert phase for each trajec-

tory. A threshold of |27| deg in relative phase (±15% of maximum phase difference 180 deg)

determined the end of the transient and the beginning of steady state. The standard deviations

of relative phase served as indicator for stability during the steady state.

mp
ᶿ

x
Finter

mc
l +-

A B

mc

Fig 1. Task design and experimental setup: A. The task involved moving a two-dimensional cup with a ball sliding

inside, inspired by humans carrying a cup of coffee. B. Mechanical model of a cart and pendulum. If the ball is at the

bottom of the cup, the ball angle is defined as zero with positive and negative directions as shown. Hand movements

that displace the cup on the horizontal line create interaction forces, Finter. C. The virtual experiment: A participant

stands in front of the large screen and holds the handle of the HapticMaster robot to move the cup in the virtual

environment. The inset shows the subject’s grip on the robot handle. D. Two rectangles on the screen delimited the

cup movement amplitude, although they were larger than the cup allowing for some tolerance to downplay accuracy

demands. Box A and Box B were 0.30 m apart, located at -0.15 m and 0.15 m, respectively.

https://doi.org/10.1371/journal.pcbi.1009597.g001
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Fig 2. Object kinematics and transient calculation. A. Kinematics of the cup and ball of one sample subject: cup position, ball angle, cup velocity, and ball

velocity. The panels show 60 trials (every other trial, with the sequence indicated by the color gradient). The dashed black lines in the top panel with cup position

show the instructed cup amplitude, defined by the centers of Box A (-0.15m) and Box B (0.15m). The time series were aligned at the moment of trial initiation

when the cup velocity was at its last zero prior to reaching Box B for the first time and starting the regular rhythmic movement. Initial conditions (IC) of all four

variables were determined at this time point. B. Top panel shows cup position normalized to ±1 and ball angle similarly normalized between ±1. Calculation of

relative phase between cup and ball trajectories to parse each trial into a transient and a steady state portion. To demarcate the end of the transient and start of the

steady state, the instantaneous phase differences between cup and ball position were computed for the entire trial using the Hilbert Transform. The time point

when the phase difference entered and remained within a threshold shown by the thick green line (27 deg or ±15% of the maximum phase difference of 180 deg)

defined the end of the transient and start of the steady state.

https://doi.org/10.1371/journal.pcbi.1009597.g002
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Subject performance

Overall, subjects followed the task instructions and after initial exploration and preparation of

the object, they managed to synchronize their cup movements to the metronome pace. How-

ever, the task was difficult and in 22% of all trials (335 trials out of 1560 trials for all 13 subjects)

the ball angle exceeded the rim angle at 50 deg and ‘escaped’. Two of these 13 subjects lost the

ball in 55 and 60 trials, respectively and were excluded as outliers from all further analysis [41].

The percentage of failed trials across the remaining 11 subjects was 16.71%, i.e., 220 trials out

of 1320. Of these failed trials, 18 trials were aborted during the preparation interval, while 202

trials failed predominantly in the first third of the experiment as the histogram in Fig 3A

shows. The failed trials of the 11 subjects were excluded from subsequent analysis.

Given that the metronome frequency was set to 0.60 Hz, the average overall frequency at

which subjects oscillated the cup during the entire trial was 0.58 Hz (range: 0.55–0.63 Hz).

While the average frequency slightly increased from the first 5 to the last 5 trials (from

0.564 ± 0.033 to 0.588 ± 0.012 Hz, t(10) = -3.10, p = 0.0112), the frequencies in the last 30 trials

did not significantly differ from 0.60 Hz, t(10) = 1.16, p = 0.2741. The average peak-to-peak

cup amplitude increased from the initial 5 trials to the last 5 trials (from 0.298 ± 0.012 m to

0.309 ± 0.011 m, t(10) = -3.71, p = 0.0041). The cup amplitude at the end in the last 30 trials

did not differ from 0.30 m, t(10) = -0.81, p = 0.4347. Hence, overall subjects satisfied the task

instructions.

The time that subjects used to explore and prepare the cup-and-ball for the subsequent

movements was unrestricted. However, over the course of the experimental session, this prep-

aration interval decreased showing that subjects needed less time to prepare for their move-

ments in later trials. Fig 3B shows the average times with their standard errors across subjects

for each of the 120 trials. The data were fit by an exponential function with a time constant of

22.48 trials and R2 = 0.60. Note that for many trials, especially in the early part of the experi-

ment, fewer than 11 successful values were available; the standard error was calculated over the

available number of subjects per trial. The preparation interval decreased from 15.35 ± 9.81 s

in the first 5 trials to 5.24 ± 2.07 s in the last 5 trials (paired t-tests: t(10) = 3.45, p = 0.0062). To

further visualize how subjects prepared the cup-and-ball system, Fig 3C displays a histogram

of the individual cup movement cycles for all subjects during the preparation interval. The fre-

quencies of all cup cycles were binned into intervals of 10 trials; the yellow colors denote

Fig 3. Subject performance: A. Number of subjects that lost the ball for each trial number. B. Duration of the preparation interval averaged across subjects

over trials. The fluctuating solid line represents the mean, the shaded area represents the standard error across 11 subjects. The dark solid lines represent the

exponential fit to the data, A 1þ e� t
t

� �
þ B. The fitted parameters were: A = 12.75, τ = 22.48, B = -7.41, R2 = 0.60 (see methods and statistical analyses). C.

Frequencies of cup cycles for all subjects during the preparation interval, plotted in bins of 10 trials. The color gradient denotes the number of cycles in each

frequency bin; yellow shows high numbers.

https://doi.org/10.1371/journal.pcbi.1009597.g003
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frequencies that were employed more frequently. The histogram shows that during initial tri-

als, subjects explored a wider range of cup cycle frequencies and then converged to moving the

cup at the prescribed frequency of 0.60 Hz prior to initiating the regular rhythmic task.

Predictability of cup and ball dynamics

The overall hypothesis was that subjects seek to increase the predictability of the interactive

dynamics between the applied force and the object. Consistent with previous work

[18,19,22], mutual information (MI) between the interaction force Finter(t) and the object

dynamics was used to quantify predictability. Here, we computed MI between Finter(t) and

the cup phase and the ball phase separately; both metrics were computed over the entire

trial duration including transient and steady state. Fig 4 shows that MI for both the cup and

ball kinematics increased exponentially with a relatively short time constant of 11.54 trials

(R2 = 0.65) before reaching a plateau. Comparing the first and last 5 successful trials shows

that MI increased from 1.219 ± 0.122 nat to 1.371 ± 0.07 nat at the end, t(10) = -5.510,

p = 2.581x10-04 (Fig 4). For reference, the maximum MI value between Finter(t) and the cup

movement for the given parameters was 1.60 nat. MI between Finter(t) and the ball move-

ment also increased with a time constant of 14.14 trials, R2 = 0.71. MI increased from

1.019 ± 0.187 nat in the first 5 trials to 1.245 ± 0.094 nat in the last 5 trials, t(10) = -4.866,

p = 6.551x10-04. Both changes in MI were statistically significant, supporting the overall
hypothesis that participants increased the predictability of their interactions with the cup-

and-ball system.
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https://doi.org/10.1371/journal.pcbi.1009597.g004
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Hypothesis 1: Initial conditions

Did subjects achieve this predictable behavior by preparing the cup-and-ball system appropri-

ately and choosing favorable initial conditions? The initial conditions were ball angle θ0, ball

angular velocity _y0, and cup position x0; cup velocity _x0 was 0 by definition. Fig 5A, 5B and 5C

show the average and standard errors of all three variables across all subjects over the course of

the 120 trials. Exponential fits over the plotted averages highlight the overall trends.

The initial ball angle θ0 changed from an average of -7.23 ± 7.43 deg across subjects in the

first 5 successful trials to an average of -22.75 ± 7.31 deg in the last 5 successful trials, t(10) =

5.43, p = 2.883x10-04 (Fig 5A). The exponential fit across trials had a decay constant of 21.82

trials with R2 = 0.75. The initial ball velocity _y0 across subjects changed only slightly from an

average of -4.67 ± 19.26 deg/s in the first 5 trials to -11.74 ± 24.17 deg/s in the last 5 trials, t(10)

= 0.85, p = 0.4160 (Fig 5B). The exponential fit to the data had a much longer decay constant

of 58.38 trials and a low R2 = 0.12 due to the high variability. The initial cup position x0 across

subjects started with an average of -0.152 ± 0.020 m in the first 5 trials and decreased to an

average of -0.156 ± 0.013 for the last 5 trials, t(10) = 0.70, p = 0.4990 (Fig 5C). For reference,

the center of Box A was located at -0.15 m, thus the average initial cup position was close to
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Fig 5. Average initial conditions over trials: A. Initial ball angle of 11 subjects across 120 trials. The solid blue line

represents the mean, the shaded area represents the standard error across subjects (excluding their failed trials). The

solid black line represents the exponential function fitted to the data: A = 19.86, τ = 21.82, B = -42.09, and R2 = 0.75. B.

Initial ball velocity; parameters of exponential fit: A = -14.59, τ = 58.38 and B = -2.86, and R2 = 0.12. C. Initial cup

position; parameters of exponential fit: A = 0.02, τ = 40.94, B = -0.18, and R2 = 0.45. D. Exponential functions fitted to

each individual subject’s initial ball angle over 120 trials.

https://doi.org/10.1371/journal.pcbi.1009597.g005
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the center of Box A (Fig 1). The exponential fit to the data had a decay constant of 40.94 trials

and a R2 = 0.45. These results on ball angle and velocity gave first support for hypothesis 1 stat-

ing that, if given a choice, subjects converge to a subset of initial conditions. The variable that

showed the most pronounced convergence towards preferred initial conditions was the initial

ball angle. The starting position of the cup played a subordinate role.

The related important question was whether all subjects converged to similar initial ball

states θ0 and _y0, as opposed to finding their individually preferred initial conditions. Were the

initial conditions determined by the object or was there a choice? To evaluate this question,

each individual subject’s initial ball angles over the 120 trials were fitted by an exponential

function to determine the asymptote, the R2 of the fits ranged from 0.31 to 0.80. Fig 5D shows

the exponential fits to each individual subject’s initial ball angles over trials. The asymptotes of

the 11 subjects ranged from -17.87 to -41.51 deg, shown in Fig 5D. Comparing the last 5 trials

of the 11 subjects with a one-way ANOVA identified significant differences, p = 6.1414x10-14.

This result supports hypothesis 1b that each subject finds their own preferred initial condition

and will be revisited below.

Hypothesis 2: Transient duration

Hypothesis 2 stated that transients should become shorter as, by definition, transients imply

non-stationary dynamics that is harder to predict. Note that subjects were only asked to move

the cup rhythmically at the metronome pace to the best of their abilities; they were never

explicitly told to decrease their transient duration or to reach a steady state. Fig 6A summarizes

the change in transient duration across the 120 trials. The average transient across all subjects

significantly changed with an exponential decline (R2 = 0.56); the decay constant τ was 27.29

trials. In the first 5 successful trials the average duration was 6.068 ± 3.035 s and decreased to
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https://doi.org/10.1371/journal.pcbi.1009597.g006
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2.172 ± 1.952 s by the last 5 successful trials, t(10) = 3.58, p = 0.0019. This result supports

hypothesis 2, showing that subjects shortened their transient and achieved a predictable steady

state sooner.

Hypothesis 3: Stability of steady state

Hypothesis 3 stated that stability during steady state should increase, as predictability is

also enhanced in a system that is stable. Steady state behavior in this coupled cup-and-ball

system consists of two approximately sinusoidal movements that are either approximately

in-phase or anti-phase. However, for the given cup movement frequency, cup and ball are

close to in-phase, as evident from linear frequency response analysis (for the lossless sys-

tem, they are exactly in-phase, but with hand impedance present, deviations arise) [20,40].

To assess the degree of stability in coupled oscillations, relative phase and its fluctuations

have been used as a proxy [42,43]. Fig 6B show the standard deviations of relative phase

during the steady state portion of the trials. The mean across subjects noticeably decreased

over 120 trials, highlighted by the decaying exponential with a time constant τ of 23.43 tri-

als (R2 = 0.31). In the first 5 trials the average was 0.074 ± 0.030 arbitrary units (a.u.) that

significantly dropped to 0.050 ± 0.007 a.u. in the last 5 successful trials, t(10) = 2.61,

p = 0.0166.

Alternative Hypothesis 1: Interaction force or effort

The first alternative hypothesis was derived from several studies that showed that humans

minimized effort during unconstrained movements [34,44,45]. The interaction force of the

hand on the cup, Finter, was measured by a force sensor at the robot handle. The root mean

square (RMS) of Finter over the entire trial duration was used to quantify the exerted effort.

The average RMS of Finter or effort across subjects over trials is plotted in Fig 7A. Contrary

to expectation, the exerted force onto the cup-and-ball increased across trials; the time con-

stant of the exponential fit was 28.76 trials (R2 = 0.80). The average value in the first 5 suc-

cessful trials was 5.240 ± 0.668 N and increased in the last 5 trials 6.327 ± 0.496 N, t(10) =

-4.33, p = 3.2264x10-04. These results rejected alternative hypothesis 1, demonstrating that

when interacting with a complex object subjects may even increase their effort due to other

priorities.

Alternative Hypothesis 2: Smoothness of cup and ball trajectories

Smoothness of the cup trajectory was quantified using the Spectral Arc method (SPARC)

that was specifically developed to assess smoothness in continuous or rhythmic kinematics

(see methods Eqs 7–9 [46,47]). The average smoothness of cup kinematics across subjects

per trial decreased throughout the experiment, i.e., cup trajectories became less smooth

(Fig 7B). The values decreased from -1.461 ± 0.083 a.u. in the first 5 successful trials to

-1.549 ± 0.037 a.u. in the last 5 trials, t(10) = 3.19, p = 0.0046. The exponential fit had a

decay constant of 19.44 trials (R2 = 0.71). Fig 7C shows the corresponding smoothness of the

ball kinematics across subjects over 120 trials. Ball smoothness showed no significant trend

over the course of the experiment, evidenced by the insufficient fit of the exponential func-

tion (R2 = 0.0033). The values were -1.516 ± 0.041 a.u. in the first 5 successful trials and

-1.513 ± 0.025 a.u. in the last 5 successful trials, t(10) = -0.16, p = 0.8753. These results dem-

onstrate that in continuous rhythmic interaction with an object with nonlinear internal

dynamics, smoothness of the object dynamics is not prioritized, providing evidence against

alternative hypothesis 2.
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Alternative Hypothesis 3: Energy margin or risk

To assess if subjects minimized the likelihood of losing the ball, an energy margin was calcu-

lated that quantified the difference between the energy of the ball in its current state and the

minimum energy leading to ball escape (see methods Eqs 10–15). Smaller energy margins sig-

nify higher risk of the ball angle exceeding the height of the cup and escaping. The energy
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https://doi.org/10.1371/journal.pcbi.1009597.g007
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margin was transformed to 1-energy margin to obtain an intuitive metric for the risk of failure.

Risk is a normalized and unitless value between 0 (ball resting at the bottom of the cup) and 1

(ball at the verge of escaping the cup). Fig 7D shows that risk averaged across subjects

increased exponentially with a time constant of 23.32 trials (R2 = 0.46). The values in the first 5

trials, 0.405 ± 0.087 a.u. increased to 0.487 ± 0.064 a.u. in the last 5 trials, t(10) = -2.52,

p = 0.02. This result provides evidence against alternative hypothesis 3. Despite the instruction

to avoid losing the ball from the cup, subjects increased the likelihood of failure throughout

the experiment, potentially prioritizing other objectives over risk.

Simulation results and hypothesis testing

To further scrutinize subjects’ behavior and their choice of initial conditions, inverse dynamics

simulations were performed. Setting sinusoidal cup trajectories as the desired output, the cal-

culations identified the necessary input, i.e., interaction forces for all feasible initial ball states.

The computed interaction forces gave insight into which initial conditions afforded the least

complex forces to achieve rhythmic cup trajectories. To also evaluate whether the initial condi-

tions supported any of the hypothesized objectives, forward dynamics simulations used a sim-

ple control model to generate cup and ball kinematics. Sweeping through an array of initial

conditions, the generated trajectories were analyzed in the same way as the experimental data.

The results created solution spaces in which the data could test the hypotheses about predict-

ability and possible alternatives.

Inverse dynamics: Effect of initial ball angle on interaction forces. Inverse dynamics

calculations were performed to evaluate the effect of initial conditions on the interaction force

Finter required to generate the desired rhythmic movement of the cup. These calculations did

not assume any controller, but instead computed the temporal profile of Finter needed to gener-

ate a sinusoidal cup trajectory for specific initial ball angles. The simulations focused on the

effect of θ0 on Finter as the experimental data showed the clearest convergence in initial ball

angles. The desired cup displacement was modeled as a sinusoid. To afford the best compari-

son to the experimental data, the sinusoidal cup frequency was set to the subjects’ mean fre-

quency 0.58 Hz, and the peak-to-peak amplitude was set to the subjects’ mean amplitude 0.308

m. The initial conditions for the cup were set to: x0 = -0.15 m, _x0 = 0 m/s, and initial ball veloc-

ity _y0 was set to -15.81 deg/s, which was the average _y0 across all subjects. While these values

were kept constant, the inverse calculations swept through all values of θ0 between -90 deg and

90 deg, with a step size of 5 deg. Fig 8A and 8B display two profiles of Finter(t) (top panels) that

generated the same sinusoidal cup displacement x(t), but the simulations were initialized with

different initial ball angles: θ1 = −30.29 deg on the left (Fig 8A), and θ2 = 40 deg on the right

(Fig 8B).

The first profile Finter(t) produced a consistent periodic and predictable force profile. The sec-

ond profile Finter(t) shows highly irregular force values that ranged between 20 N and −20 N.

To summarize the dependence of Finter profiles on the initial ball angles θ0, stroboscopic

plots were produced. For each simulation run with a given θ0, Finter(t) was strobed at the max-

ima of the cup position trajectory; Fig 8A and 8B show these strobed values as magenta points

in the force profiles. The marginal distributions of these strobed Finter values, shown at the y-

axis, were plotted against the respective θ0 value that had generated that force profile (Fig 8C).

The figure shows these marginal distributions by black points; θ1 and θ2 are highlighted with

vertical magenta lines. The initial ball angle θ1 that produced the simplest Finter profile was at

−30.29 deg; the value of Finter at the maxima of the cup was always -7.94 N. Note that these sim-

ulations included all generated time series of Finter(t), even if the ball exceeded the rim angle of

the cup (50 deg). Hence, the gray-shaded box overlaid on the figure marks those initial ball
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angles for which the simulated ball positions did not exceed ± 50 deg, i.e., did not escape the

cup. While there is one optimum, leading to a strictly periodic solution, the range of possible

initial conditions was from -50 to -11.51 deg. Interestingly, the summary plot of strobed force
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https://doi.org/10.1371/journal.pcbi.1009597.g008
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values has remarkable similarity with bifurcation diagrams that show the period-doubling

route to chaos [48,49]. Hence, Fig 8C indicates that for certain initial conditions this seemingly

simple cup-and-ball system can indeed display chaos [31].

To also present a single value that captures the complexity of the interaction force profile,

MI between the cup kinematics and the simulated Finter(t) for each θ0 was calculated. Higher

MI indicates higher predictability between the interaction forces and the cup kinematics. Fig

8D shows that the initial ball angles that produced the highest MI values align with those θ0

that produce the least complex distributions of strobed Finter(t) values.

To compare these simulation results to the experimental data, a histogram of θ0 for all trials

from all subjects was inserted into the diagram (Fig 8C); different subjects are distinguished by

different colors. The distribution is broad with one primary mode and a second less pro-

nounced mode. The primary mode of the distribution was at -22.68 deg, which was close to,

but not exactly at θ1 = -30.29 deg, the angle that generated the simplest force profile. A com-

parison of the last 30 trials showed that the mean values across all subjects (-22.13 ± 6.95 deg)

did not significantly differ from θ1, t(10) = -1.13, p = 0.2867. These results provide further sup-

port for hypothesis 1 that subjects seek initial conditions that prepare them for predictable

interaction dynamics.

The Additional Analysis section includes a parallel set of inverse dynamics simulations per-

formed with initial ball velocity on the x-axis, and different fixed initial ball angles. Similar

strobed force diagrams were obtained showing that the experimental initial ball velocities align

with those that produce more regular interaction forces, although the data were more variable.

Forward simulations with an impedance controller. To gain more insight into the con-

trol objectives and test the specific hypotheses about predictability and the alternative hypothe-

ses, forward simulations were conducted for the range of possible initial ball conditions. To

avoid making too many assumptions about the controller, a simple first-order controller with

mechanical impedance was used to drive the cup.

Finter ¼ � K½x � xdes� � B½ _x � _xdes� ð1Þ

The desired cup movements xdes and _xdes were assumed to be a sinusoid to approximate the

instructed cup movement. To conduct the simulations, first the impedance parameters, stiff-

ness K and damping B, were estimated for each trial of each subject. Using an optimization

procedure, described in the methods, the modes of the impedance estimates across all trials

and subjects were determined: K = 40 N/m and B = 40 Ns/m [22]. Using these as representa-

tive values, forward simulations were run to assess how different initial ball angle and velocity

values generated different transient durations, stability of steady state, effort, smoothness and

risk. As above, the cup amplitude was set to 0.308 m and cup frequency was set to 0.58 Hz; the

initial cup position x0 was -0.15 m, and cup velocity was _x0 ¼ 0. In the simulations the initial

ball angle was varied from -50 deg to 45 deg with a step size of 5 deg; the initial ball velocity

was varied from -160 deg/s to 160 deg/s with a step size of 5 deg/s.

Hypotheses 2 and 3: Transient duration and stability of steady state. Transient dura-

tions and relative phase fluctuations were calculated for each simulation run using the same

methods as for the experimental data (Fig 2B). Fig 9A shows a heat map of the transient dura-

tions predicted by initial ball angles and initial ball velocities. The lighter colors identify the

regions that result in relatively short transients; blue indicates longer transient durations. Note

that there is a region or manifold of transient durations of 0 s that were generated by initial

ball angles between -21.35 deg and -38.54 deg and initial ball velocities between 0.43 and

-102.70 deg/s; the center of this yellow-shaded area was located at θ0 = -29.14 deg, _y0 = -54.70

deg/s. To compare the simulated results with human data, all 1100 successful experimental
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trials from all subjects were overlaid on the heat maps based on their measured initial ball

states. A color gradient in the data points indicates the progression from early (darker) to late

trials (lighter). In addition, each individual subject’s change is shown by a red arrow that con-

nects the mean of the first 5 with the last 5 trials. Both visualizations show a trend from small

positive ball angles to more negative ball angles; 5 out of 11 subjects also displayed increasingly

negative ball velocity. This overlay shows that although the final values differed across subjects,

all arrows point towards the region with the shortest transients. This redundancy in the map-

ping between initial ball states and transient duration may explain why the individual subjects

converged to different initial conditions (see Fig 5A).

Fig 9B shows the standard deviations of relative phase between the cup and ball position

during the steady state interval using the same method as for the transient durations. In the

heat map low variability or high stability is indicated in yellow, and high variability is shown in

dark blue. The initial ball angle and ball velocity that achieve the highest degree of stability are

-27.08 deg and -45.41 deg/s, respectively. The simulated map includes the same experimental

data as in Fig 9A. Again, the arrows point towards the yellow areas, consistent with the location

of the point of highest stability, in support of hypothesis 3. Note that the optimal regions for

transient duration and standard deviations of relative phase overlap, but the optimum for sta-

bility is a point, while zero-duration transients form a manifold, showing redundancy in the

choice of initial conditions.

Alternative hypotheses: Effort, smoothness and risk. The same procedure was used to

evaluate three alternative hypotheses. Effort exerted in each simulated trial was quantified

using the RMS Finter(t). The effect of initial ball states on the resulting RMS force is displayed

in Fig 10A. The yellow areas reveal initial ball states that minimized RMS force throughout the

trial, whereas the dark blue areas mark initial ball states that would increase RMS force. The

minimum simulated value of 5.48 N was produced by θ0 = -7.03 deg and _y0 = 57.72 deg/s.

Fig 9. Predicted effect of initial ball states on transient duration and stability of the steady state: Simulated results for transient duration and

variability of relative phase during steady state. The results were generated by forward simulations using an impedance controller for different initial ball

angles and velocities; the impedance parameters were: K = 40 N/m and B = 40 Ns/m; cup frequency was fixed at 0.58 Hz. In the simulated maps

experimental data of ball angles and velocities from all 1100 successful trials are overlaid; darker colors indicate early trials and lighter colors show later

trials. For each subject, the means of the first 5 trials and the last 5 trials are connected and shown by red arrows. A. Simulated transient durations for

different initial ball angles and velocities. B. Stability of steady state calculated as standard deviations of relative phase between cup and ball position.

https://doi.org/10.1371/journal.pcbi.1009597.g009
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Comparing these predicted regions with the corresponding experimental data clearly shows

that subjects moved away from the optimal initial ball states that would reduce effort. These

simulations are consistent with the experimental observations reported above (Fig 7A) and

show that the chosen initial conditions can lead to these counter-intuitive results that reject

alternative hypothesis 1.

Cup and ball smoothness were calculated using the SPARC metric [46,47] on the simulated

cup velocity and ball velocity for each of the forward simulation run. Fig 10B and 10C show

the solution spaces together with the same experimental data as before. The initial ball states

that produced the smoothest cup trajectory value -1.499 a.u. were θ0 = -44.27 deg and _y0 =

Fig 10. Predicted effect of initial ball states on effort, smoothness and risk metrics: Simulated metrics generated by forward simulations using an

impedance controller for different initial ball angles and velocities. The impedance parameters were: K = 40 N/m and B = 40 Ns/m; the cup frequency was

fixed at 0.58 Hz for all simulations. In all simulated maps experimental data of ball angles and velocities from all 1100 successful trials are overlaid; darker

colors indicate early trials and lighter colors show later trials. For each subject, the means of the first 5 trials and the last 5 trials are connected and shown by

red arrows. A. Effort expressed as RMS of Finter(t). B. Simulated cup smoothness values calculated for different initial ball angles and initial ball velocities.

C. Simulated ball smoothness values calculated for different initial ball angles and initial ball velocities. D. Risk or the inverse of energy margins. In all

simulations, yellow indicated the desired regions.

https://doi.org/10.1371/journal.pcbi.1009597.g010
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155.1 deg/s. The highest ball smoothness in simulation was -1.450 a.u. and was achieved

with θ0 = -44.27 deg and _y0 = -114.1 deg/s. The subjects’ changes in cup smoothness were

opposite to the optimal regions predicted by the forward simulations: smoothness decreases,

rejecting alternative hypothesis 2. While the individual subjects’ ball smoothness did not

decrease as clearly, it also showed little convergence to the optimum predicted by the model

simulations.

Risk in the simulated ball trajectories was quantified by 1-energy margin as above (Fig

10D). The minimum risk value was 0.49 a.u. obtained with θ0 = -32.81 deg and _y0 = -28.22

deg/s. Yellow in the colormap shows initial ball states that produce kinematics with low risk,

although the gradient is shallow. Of all the objectives, risk showed the least amount of variation

based on initial ball states, visible in the limited color changes. Note also that this simulation

was performed keeping the cup frequency fixed to the mean value. Even though the changes in

cup frequency were small (see above), the solution space changed with frequency in a subtle

manner. Computing correlations between cup frequency and risk showed a good correlation

of 0.78. Subsequent correlations between cup frequency and risk showed that risk values

depended on cup frequency, such that higher cup frequencies produced higher risk values. In

sum, the analyses of risk were less informative.

Discussion

This study examined strategies that humans adopted when moving a non-rigid object, a cup

with a ball rolling inside, continuously between two targets. Due to its internal dynamics,

seemingly simple cup movements could generate complex dynamic behavior that ranged from

predictable to chaotic, depending on the initial ball states. In this experiment, subjects were

given the opportunity to explore and prepare the cup-and-ball dynamics before starting their

continuous cup movements that were paced by a metronome. The overarching hypothesis was

that humans strive to make the interaction dynamics more predictable. The experimental

results supported this overarching hypothesis, specified with support for the three specific

hypotheses. As humans prepared the object for the upcoming task, they indeed converged to a

subset of initial conditions, most prominently ball angles, but also ball velocities. While indi-

viduals differed in their choices, each subject chose a narrow subset of initial ball angles

(hypothesis 1). The transient portions became shorter with practice such that subjects reached

the steady state portions faster (hypothesis 2). Steady state performance implies predictable

relations between interaction force and object dynamics; this stable relation can be character-

ized by fluctuations of relative phase between hand and ball. As expected, variability decreased

with practice, i.e., the degree of stability of this steady state increased (hypothesis 3). Three

alternative objectives (minimum effort, maximum smoothness, and minimum risk) could not

account for interacting with a complex object. Given the widespread acceptance of these crite-

ria in unconstrained movement tasks, our results demand a pause and further scrutiny. Results

from inverse dynamics supported that the initial ball states that produced the most predictable

cup-ball interactions in simulation coincided with those chosen by human subjects. Forward

simulations with a first-order impedance control model based on estimated hand impedance

revealed that the experimental initial conditions approximately matched the theoretical solu-

tions that shortened transient durations and reached a stable steady state. Analogous simula-

tions of three alternative hypotheses, effort, smoothness and risk, created very different

solution spaces that did not match the experimental data.

In sum, the overarching hypothesis that human subjects aim to increase predictability of

the interaction dynamics was supported.
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Preparing the object for the task: Sensitivity to initial conditions

Preparatory movements are frequently observed in sports and often become a characteristic

signature of the athlete. For example in baseball, pitchers converge to specific ‘wind-up’ move-

ments prior to throwing the baseball [50]. The gymnastic routines of an elite diver after take-

off are largely dependent on their often idiosyncratic preparatory actions on the spring board

[30,51,52]. In daily manipulation tasks, humans prepare flexible objects to facilitate their tasks,

such as stretching a shirt before folding it, or bending a string during knitting to pick it up

with the needle [53,54].

The temporal evolution of the cup and ball is sensitive to initial conditions and chaotic

behavior is possible as it is a nonlinear dynamical system [8,19,20,55,56]. Chaotic behavior is

indicated in the stroboscopic plot of Fig 8 that displays an intricate pattern of interaction forces

resembling the period-doubling bifurcations of one-dimensional nonlinear maps (see also

Additional Analysis) [48,49]. Quasi-periodic and chaotic behavior can be unpredictable, even

in a purely deterministic system, and for the human performer it is impossible to predict.

Applying real-time corrections based on perceived errors is problematic due to delays in the

feedback loop that have longer timescales than the rapidly changing behavior in the hand and

object interactions [27,57,58]. Hence, we argue that subjects learn to initialize the ball states to

increase predictability of the interactive dynamics. Appropriate initialization of an object to

achieve more ‘comfortable’ interaction with it is also reminiscent of the “end-state-comfort”

effect; humans tend to grasp objects with hand configurations that facilitate more comfortable

final postures at the end of the object transport [59,60]. While a number of studies reported

this finding, comfort and personal preference is a subjective concept. The present study used a

quantitative approach based on interactive dynamics to show that preparation—setting initial

conditions—is important to achieve a task goal successfully.

Preparation versus exploration. Results clearly showed that all subjects converged to ini-

tial ball states. However, individual subjects chose different initial ball angles indicating that

the initial ball angle was not determined by the dynamics of the object, but that there was a

choice. As the simulated solution space for transient duration showed, there was a manifold of

ball states that could achieve transients with zero duration. The final values of ball angle ended

up in this manifold (Fig 9A). Hence, all subjects prepared themselves for the task in different

but successful ways.

Analysis of the preparation interval exhibited a significant decrease, paralleling the conver-

gence to the appropriate initial ball states. In addition, the cup cycles during the preparation

interval, where no instructed frequency was present, revealed a decreasing range of cycle fre-

quencies. In later trials subjects relatively quickly created cup movements of the desired 0.60

Hz frequency, i.e. prepared themselves for the upcoming task. After approximately half of the

trials, subjects adopted the task-instructed cup frequency and initial conditions in a relatively

short time. These findings reflect that initially subjects explored the system, i.e., performed sys-

tem identification, to find the best preparation. Hence, they learned to prepare the object with-

out the need for further exploration. While we did not further scrutinize the relative

contribution of exploration versus preparation, this distinction between exploration and prep-

aration is important, given the wide-spread interest in exploratory movements. Exploratory

movements are generally regarded as random aiming to identify optimal locations in solution

space [29,61]. In contrast, preparation is goal-oriented, assuming the existence of favorable

conditions to execute a task optimally.

Initializing actions in neural systems. While it is a challenge to relate our behavioral

findings to their neural substrate, recent studies in cortical dynamics of non-human primates

have provided evidence that neural populations show distinct preparatory behavior [62,63].
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Simultaneous electrophysiological recordings in motor and pre-motor areas showed that prior

to movement onset, spontaneous firing transitioned into a movement-specific preparatory

state with stable firing rates [64–66]. However, these observations of neural initial conditions

were observed during a delayed start of a reaching movement, i.e., in a time interval where no

movement had yet occurred. It is nevertheless intriguing to speculate that cortical networks in

the brain may converge to initial conditions in the context of preparing for a complex action

such as transporting an object. Such preparatory strategies may be employed at different levels,

e.g. neural and behavioral.

Transients, transitions, and stability

The duration of start-up transients clearly decreased across trials in all subjects as hypothe-

sized. Even though the calculation of transient duration from the data relied on tuning a

threshold, the decrease in duration was clear and this decline did not change much with differ-

ent thresholds. This highlights the significance of initializing the object dynamics to reach a

predictable steady state as soon as possible.

Transient is a concept in nonlinear dynamics that describes the time the system takes to

arrive at an attractor. The duration is dependent on the so-called basin of attraction, both on

its boundaries and the steepness of the gradient [32,67]. As such, transients may indicate the

strength or degree of stability of an attractor. Very few studies to date have paid attention to

transient behaviors, as the typical focus in movement control is either on steady state behavior

or on learning curves across trials. Non-stationary behavior is hard to quantify as it does not

permit meaningful averaging. However, transient dynamics when starting from rest can be

revealing. For example, when tracking a periodic signal with a cursor, humans tracked the sig-

nal with a constant phase shift that shortened the transient when the target signal changed its

period [68]. The same behavior was reported when tapping in synchrony with a metronome

[69].

Transitions between two stable states are different from start-up transients, but similarly

informative about control and coordination. Sternad and colleagues examined involuntary

transitions between discrete point-to-point arm movements to smooth rhythmic behavior

when paced by a slowly accelerating or decelerating metronome frequency [70,71]. It was the

changing kinematics, not the steady state behavior, that provided insights into principles of

coordination. Transitions between different modes of oscillations in a rhythmic movement

(non-equilibium phase transitions of a nonlinear dynamical system) were central in a seminal

study by Kelso and colleagues [72]. When moving left and right fingers rhythmically in anti-

phase mode, increasing frequency induced a transition to in-phase mode [73]. This spontane-

ous transition and the frequency at which this change occurred provided important informa-

tion for characterizing the system’s dynamics [74]. When subjects intentionally switched from

anti-phase to in-phase behavior [75,76], ‘switching time’, or the duration of the transient,

served as a measure to assess the differential stability of the two attractors. In sum, non-station-

ary behavior can provide an interesting window into control and coordination.

Increasing predictability via stability

The present findings on the steady state provided support for the overarching hypothesis that

humans create predictable interactions, reinforcing our previous work on the same cup-and-

ball task that increasing predictability in interactions is an implicit task goal [19,22,77]. In

order to further specify the strategies that ensure predictability, Bazzi and Sternad previously

demonstrated that dynamic stability measured by contraction [78] is a means to achieve

predictability [26]. When a dynamic system is at a stable attractor, small perturbations return
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to the limit set without requiring explicit corrective control [79]. Stability thereby obviates

excessive error corrections as previously argued in the context of the task of rhythmically

bouncing a ball [80–82]. Using a discrete cup-and-ball movement, where subjects learned to

accommodate a visible perturbation that could cause the ball to escape, Bazzi et al. showed that

subjects learned to approach the visible ‘bump’ with a strategy that exploited the contracting

regions of the state space [26,83]. Given this robustness to perturbations, it is reasonable to

conclude that a stable state requires decreased cognitive or computational effort.

Stability is usually measured by applying perturbations and assessing the time to return or

‘relax’. Alternatively, variability can also express the degree of stability of a dynamical system.

In the literature on bimanual rhythmic movements, relative phase between two rhythmic com-

ponents served as the variable that characterized the stability of two coupled oscillators. Mean

relative phase and its variability quantified the degree of stability of the coupled system. Based

on this research, we used relative phase between the two oscillatory cup and ball movements to

indicate when transients ended and stable steady state began. Taking the difference between

the two phases of the two components subtracts out large amplitude fluctuations, allowing the

signal to reveal small fluctuations. The same signal also revealed the changing stability of the

steady state. As hypothesized, the fluctuations around the stationary signal decreased with

practice.

Predictability, minimum intervention principle, and uncertainty

The reason for seeking predictability is that it simplifies the challenge of prediction: it obviates

the need for precise internal models. More economical predictions may lead to fewer errors,

hence afford reliance on feedforward control without excessive feedback-based error correc-

tion. Although effort minimization and the minimum intervention principle are core to sto-

chastic optimal feedback control models [44,84], they are quite distinct from predictability.

The former ensures that deviations from typical behavior are only corrected if they interfere

with the goal of the task, hence, leading to minimal effort expenditure and synergetic coordi-

nation. However, the hypothesis of predictability is not concerned with how error corrections

are selected to channel variability during the movement execution, rather, it examines how

subjects prepare the initial conditions of an object prior to the intended movement to ensure

simpler interactions with the object during the movement. Once a strategy is learned based on

the objective of increasing predictability, one could argue that the variability around such strat-

egy during the movement could be dealt with based on the minimum intervention principle.

However, this was not tested in our study.

Note that increasing predictability is also similar, but not equivalent to, reducing uncer-

tainty. The latter implies a reduction in noise in a stochastic system, whereas predictability is

also a feature of deterministic dynamics. A deterministic system can exhibit chaos that can

manifest as variability in its time series and easily be mistaken for stochastic noise [85]. Our

model simulations are purely deterministic and can exhibit fluctuations of different degrees;

however this is not random noise, i.e., uncertainty, but has a complex structure (as revealed in

Fig 8). The human data likely present a combination of deterministic structure and random

noise.

Inverse and forward simulations and their model assumptions

As a complementary avenue to evaluate whether subjects’ initial explorations and preparations

had significant effects on simplifying dynamics or other objectives, inverse and forward

dynamics simulations were performed. To start, the inverse dynamics simulations made no

assumptions about the human controller; they only determined the force input needed to
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achieve sinusoidal cup trajectories. The equations to solve for Finter(t) did not take into account

the hand on the cup, which introduced impedance and therefore increased the order of the

system. Nevertheless, the simulation results visualized how the potential complexity of the

interaction forces depended on the initial ball states. Mutual information between these inter-

action forces and the object dynamics rendered matching results to express the degree of

predictability for given initial ball states. Subjects’ preferred initial ball states at the end of prac-

tice approximately aligned with the values that achieved more predictable interactions in simu-

lation. This coincidence is noteworthy for yet another reason: the inverse dynamics

simulations did not include any online error corrections based on feedback. Therefore, this

suggests that subjects could accomplish the task without significant online error corrections.

To reiterate, online error corrections suffer from long delays in the sensorimotor system and

rely on prediction of sensory consequences. It may be difficult to predict sensory consequences

for unpredictable interaction forces.

The forward simulations served to establish a more direct link between initial conditions

and the hypothesized control objectives: reduced transient duration and steady state stability,

but also minimal effort, jerkiness, and risk. As a controller is needed, we chose a relatively sim-

ple impedance controller, following a sinusoidal desired trajectory, that served to minimize

deviations from the desired sinusoidal cup trajectory. The impedance is a proxy for mechanical

or spinal reflex mechanisms with short latencies between 25 to 80 ms [86,87]. In contrast to

explicit error corrections in a biological system that involves transcortical sensorimotor loop

delays>100 ms, impedance-based corrections are regarded as compensations around a

planned sinusoidal zero-force trajectory that are either spinally mediated or that arise from

intrinsic muscle mechanics [88,89]. While the constant impedance values assumed in this task

are likely to be an oversimplification of the biological system, reliable estimates from real

human movements are still missing [90,91]. Variations of the impedance values and also addi-

tional feedback terms with delays and noise could be introduced. However, the model predic-

tions with this simple model accounted remarkably well for the experimental results.

The solution spaces generated by the impedance controller for all hypothesized objectives

reinforced the experimental findings. The broad distribution of initial ball angles in the data

matched the redundancy in the solution space for the transient durations, showing a manifold

of transients with zero duration. This may explain why individual subjects did not converge to

the same initial conditions. While they had a choice, the initial states were largely within this

manifold. The stability estimates indeed followed the gradient of the solution space approach-

ing optimal values of stability. In contrast, the solution spaces for effort, smoothness and risk

showed little congruence with the data. It should be pointed out that the parameters for the

impedance controller were identical for all simulations. Some of these results appear counter-

intuitive. Effort indeed increased, consistent with previous demonstrations [19,22]. The

decrease in smoothness of the cup kinematics can be understood from detailed inspection of

the cup’s trajectories: at each excursion, the ball introduced an additional extremum, appear-

ing as an additional frequency in the profile. This increased the ‘peakiness’ of the spectrum

leading to a less smooth SPARC metric. The risk metric proved less informative. Further anal-

yses showed that risk was highly correlated with cup frequency. As cup frequency showed a

small increase throughout the experiment, risk increased almost proportionally.

Interrelation between objectives?

Could the different objectives be interrelated? For example, the solutions for short transients

and optimal stability partially overlap. Might subjects trade one objective for another? To

begin, the six objectives are indeed not independent as they are all mathematically derived
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from simulating the controlled system based on initial conditions: ball position and ball velocity.

However, the topologies of the resulting landscapes are very different, which would make com-

binations and trade-offs relatively complex. A trade-off is also unlikely as the three ‘predictabil-

ity’ metrics, mutual information, transient duration and variability of relative phase all show an

improvement, while all three alternative objectives get worse. Nevertheless, one might consider

that there may be one cost function that combines all six objectives, essentially a weighted sum

of the objectives, that afford one global minimum. However, quantitative evaluation of such a

combined solution space would be difficult as the six costs would require normalization and

weighting to create a single cost function, inviting arbitrariness in determining the weights.

Sensory information or reinforcement learning to achieve predictable

dynamics?

So far, our study has only documented that predictability is an important objective in complex

dynamic interactions and that appropriate initial conditions shorten transients to allow a

more stable and predictable steady state to emerge earlier. However, we have not yet

addressed, let alone answered, the question of how humans sense and attain these predictable

interactions. It is unquestioned that visual, haptic and proprioceptive feedback may play an

important role in any interaction with an object in the environment, and studies of their rela-

tive contributions to control and learning abound [81,92–95]. Undoubtedly, subjects used

visual, haptic, and auditory information in the present experiment to improve from one trial

to the next. Even though no explicit performance score was provided, subjects could hear

whether they were in synchrony with the metronome; they could see the ball motion in

response to their interaction forces, and they could feel the ball forces against their hand. The

system’s behavior is probably learned by exploring the object’s response to different human

force inputs, likely in a trial-and-error fashion using reinforcement learning. Feedback from

each trial may have then been used to improve performance on the next trial, maybe even

from one cycle to the next.

But did subjects use sensory information for online control and correction? Assuming 200

ms as the minimal sensorimotor loop time, any error correction based on sensed events 200

ms in the past may not sufficiently compensate for the rapidly evolving dynamics [96]. Hence,

for any feedback-based error corrections, the system’s states have to be predicted and control

needs to use predicted motor and sensory consequences, as recognized previously [97–101].

Note that the inverse dynamics simulations were done without any error corrections and rea-

sonably predicted the experimental initial ball states, indicating that subjects could have

accomplished the task largely without online error corrections. As shown, objects with nonlin-

ear internal dynamics can exhibit chaotic dynamics that is essentially unpredictable [19,102].

Hence, the complex evolution of the hand-object interactions may be too challenging to accu-

rately predict over a window of 200 ms. Control of systems with time delays from multiple

sources in a distributed system becomes a problem of infinite dimensionality [103,104]. How

do humans control such infinite-dimensional unpredictable objects? How do they represent

the complex interactive dynamics? Our study only showed that humans simplified the interac-

tive dynamics by preparing the object with appropriate initial conditions and making interac-

tion forces predictable. The question how humans achieve predictability is still unanswered

and needs further investigation.

Conclusions

This study investigated rhythmic physical interaction with a dynamically complex object.

Results indicated that when given the opportunity to choose and exploit the initial conditions
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of the system, subjects did so in a manner that simplified interaction dynamics, characterized

by transient durations and predictability of hand-object interactions. The initial conditions

that were predicted by model simulations to decrease transients and increase mutual informa-

tion between hand and object were consistent with those chosen by subjects. These results sup-

port the hypothesis that predictability of an object’s dynamics is a principal objective of

human control strategies. Predictable interaction forces may be less computationally taxing on

sensorimotor information processing.

Manual dexterity in hand-object interactions–tool use–is essential in activities of daily liv-

ing and impairments have detrimental effects on the quality of life. Our findings can shed light

on the coordinative challenges and set the stage for a better understanding of impaired dexter-

ity. Moving a cup filled with coffee is an ecologically valid control challenge, inherent in many

self-feeding activities. The experimental platform and theory-based analyses and insights cre-

ate new potential for assessment and therapy for clinical populations. To date, clinical assess-

ments have been confined to kinematics and simple descriptive outcome measures, like error

scores or completion times. More precise description of functional manual interactions

requires a validated theory. This research is a step in that direction.

Methods

Ethics statement

Prior to the experiment, all subjects gave written informed consent and verified that they

understood the written and oral task instructions. All procedures were approved by the North-

eastern University Institutional Review Board (IRB#:10-06-19).

Participants

Thirteen college-aged adults (8 male, 5 female) with no self-reported neuromuscular pathology

volunteered for the experiment. All participants self-reported to be right-handed and subse-

quently performed the task with their right hand. All were naive to the experimental task and

the purpose of the study.

Experimental task and model

The task of ‘carrying a cup of coffee’ was simplified to that of pushing a two-dimensional arc

with a ball sliding inside along a horizontal line (Fig 1A and 1B). Since the ball was sliding

instead of rolling, the system was mechanically equivalent to a cart sliding on a frictionless line

with a suspended frictionless pendulum. The pendulum bob was represented by the ball, and

the cup position corresponded to the cart position. In addition, the arc of the cup aligned with

the rotational path of the pendulum. The equations of motion for this relatively well-known

“cart-and-pendulum” model are:

½mc þmp�€x ¼ mpl½
_y
2 sin y � €y cos y� þ Finter ¼ Fball þ Finter ð2Þ

€y ¼ �
€x
l
cos y �

g
l
sin y ð3Þ

where x was the cup position and θ was the ball angle. The downward vertical orientation of

the ball defined zero angle, with counterclockwise rotations denoted as positive. The mass of

the cup was denoted by mc and the mass of the ball by mp. Finter was the interaction force

applied by the subject’s hand acting on the cup. Fball was the force applied by the ball onto the

cup, which was transmitted as haptic feedback to the hand of the participant via the robot’s
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handle (Fig 1C). The parameter values of the cup-ball-system were: mc = 2.40 kg, mp = 0.60 kg,

pendulum length was l = 0.45 m, and gravitational acceleration g = 9.81 m/s2. The values were

selected to be large enough that subjects felt the forces generated by the ball, while also small

enough that the subjects did not fatigue. Despite these simplifications introduced by the

model, the challenges of “carrying a cup of coffee” were retained: underactuation and

nonlinearity.

Virtual rendering with visual-haptic interface

The cup-and-ball system was implemented as a virtual environment. For the rendering, the

cup and ball were displayed on a large projection screen (Fig 1C and 1D). Subjects controlled

the horizontal cup displacement via moving the handle of an admittance-controlled robotic

manipulandum (HapticMaster, Motekforce, Netherlands). The force applied by the participant

on the manipulandum Finter was converted into displacement x of the virtual cup [105]. Using

the cup-and-ball model, a custom-written C++ program based on the HapticAPI computed

the ball kinematics that then controlled the ball in the virtual display and fed the ball force

back to the subject’s hand in real-time with 120 Hz processing speed. Since the cup was limited

to move along a horizontal line, the movements of the robotic arm were restricted to horizon-

tal linear translations parallel to the participants’ frontal plane. The applied force Finter, the cup

position x, velocity _x, and acceleration €x, and the computed angular position θ, velocity _y, and

acceleration €y of the ball were recorded at 120 Hz.

Visual display

The visual display showed the cart as a yellow arc that represented the cup and a small white

circle that represented the ball; two blue rectangular targets at each end of the horizontal line,

Box A and Box B, delimited the displacement of the cup (Fig 1D). The visual displacement of

the cup on the screen was 4 times larger than the physical displacement of the robot. The phys-

ical distance between the centers of Box A and Box B was 0.30 m and their centers were located

at -0.15 m and 0.15 m, respectively, with zero defined half-way between them. Since the pen-

dulum length l of 0.45 m would have generated a very large cup, the visualization of the cup on

the screen was 7.5 times smaller than the radius of the simulated cup. The cup’s rim was at ±50

deg such that whenever the ball angle exceeded this angle, the ball would ‘spill’ and visually fall

out of the cup, resulting in a failed trial.

Experimental procedures

Participants sat in a chair approximately 2 m in front of a projection screen and grasped the

handle of the robotic manipulandum (Fig 1C). They were seated with their sternum aligned

with the robot; the robot’s base was equidistant between Box A and Box B on the screen and

the HapticMaster arm was orthogonal to the screen. At the beginning of each trial, the cup was

positioned in Box A with the ball resting at the bottom of the cup (θ = 0 deg). Subjects were

instructed to move the cup in a regular rhythm between the two target boxes following a met-

ronome. Its frequency was set to 0.60 Hz which was close to the anti-resonance of the cup-

and-ball system at 0.74 Hz. Theoretically, cup movements at this frequency are canceled by the

ball motion. Any movements close to this frequency become difficult as chaotic behavior is

elicited. In a previous study where subjects could select their preferred frequency, they clearly

avoided the anti-resonance and their variability increased closer to this frequency [40].

Prior to starting the rhythmic movements subjects were asked to explore the cup-and-ball

dynamics by ‘jiggling’ the cup back and forth; they could take as much time as they wanted.
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Subjects were told to ‘jiggle’ in such a manner that best prepared them for the following rhyth-

mic movements at the given metronome pace. The instruction specified that these preparatory

movements should be confined to the left half of the total cup amplitude. No further instruc-

tions were given about how to entrain with the metronome.

Once subjects felt ready, they moved the cup towards Box B and continued moving in

rhythmic fashion between the two boxes without losing the ball (|θ|<50 deg). The metronome

only started when the participant reached Box B for the first time to ensure that subjects could

entrain to the metronome from the beginning without further adjustments. After that the met-

ronome continued at 0.60 Hz to pace their movements for 15 s. At the end of the trial a success

sound was played if the trial was completed without losing the ball. The robotic manipulan-

dum stiffened so that the subject could not continue moving the cup. If the ball was lost, it

visually fell out of the cup and a failure sound was played and the trial ended shortly thereafter.

Subjects used the continuous visual feedback from the screen, haptic feedback from the robotic

manipulandum, and auditory feedback from the metronome beeps to form their judgement

about their performance. The entire experiment session was comprised of 4 sets of 30 trials

each and lasted approximately one hour. Subjects were given breaks of at least 5 minutes

between each set to avoid fatigue.

Analysis of experimental data

To provide a general description of subjects’ performance, the data were scouted for failed tri-

als, i.e., when the ball angle exceeded the rim angle and escaped from the cup. Two of the 13

subjects lost the ball in 55 and 60, or 46% and 50% of their trials, respectively. These numbers

were higher than 1.5 times the third quartile of all 13 subjects’ failure rates; hence, the two sub-

jects were excluded as outliers from all further analysis [41]. For the remaining 11 subjects,

movement frequency and amplitude were calculated to test whether or how well subjects satis-

fied the instructions. For these calculations their failed trials were excluded. Note that due to

these failed trials, especially in the beginning, these means and standard errors across subjects

often comprised fewer than 11 data points. In addition, the pairwise comparison of early ver-

sus late performance was computed using the first 5 and last 5 successful trials of each subject

(that may have spanned across more than 5 trial numbers).

Preparation interval and initial conditions. Exemplary raw time series of cup position,

cup velocity, ball angle and ball velocity for 60 trials of one subject are shown in Fig 2A. For

better visibility, every other trial was omitted; the color gradient indicates the sequence of tri-

als; blue marks early trials, green later trials. The time series were aligned at time t = 0 defined

as the time when the cup velocity was zero before the subject initiated the first full-amplitude

movement to Box B. The interval from the beginning of the subjects’ movements to t = 0

defined the preparation interval. The variables that were used to test the hypotheses were initial

conditions, transient duration, and mutual information of different trial segments.

In the beginning subjects moved the cup back and forth with varying amplitudes and fre-

quencies to explore the ball dynamics. The last point of zero cup velocity before the cup started

the first full amplitude to Box B was the time point at which the initial conditions were defined

(Fig 2A). At t = 0, initial ball angle, ball velocity, and cup position were taken; cup velocity was

zero by definition.

Mutual information. Mutual information (MI) was calculated over the entire trial, start-

ing at t = 0 and ending after 15 s. MI is an information-theoretic measure that quantifies the

degree of information that can be attained about one variable by observing another variable.

Therefore, MI measures predictability of a signal [106,107]. High MI indicates that a high

degree of information is known about one random variable given the knowledge of another
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random variable. Unlike cross-correlation, MI can evaluate both linear and nonlinear depen-

dencies [108,109]. In our data, MI quantifies the predictability between the input, i.e., interac-

tion force Finter, and the output of the system, cup trajectory and ball trajectory. MI measures

to what degree the dynamic behavior of the system diverged from simple periodic input-out-

put mapping [19]. Since the cup and ball trajectories were close to sinusoidal, the kinematics

could be represented by their phase in space:

cup phase; φcup tð Þ ¼ arctan½
_X

ð2 p f XÞ
�; and ball phase; φball tð Þ ¼ arctan½

_y

ð2 p f yÞ
�:

Then, mutual information was obtained by the following calculation using

MI φ; Finterð Þ ¼ ∬ P ðφ; FinterÞln
Pðφ; FinterÞ

PðφÞPðFinterÞ

� �

dφ dFinter ð4Þ

where P denotes the probability density functions for φ(t) and Finter(t). Mutual information is

a dimensionless quantity, and its unit depends on the base of the logarithm that is used. Here,

the natural logarithm was used, and the unit of mutual information is the nat.

Transient duration and steady state: Relative phase . As the movement started, it under-

went a transient before settling into a steady state. To calculate the duration of the transient, a

steady state for the cup-and-ball movements had to be defined first. For sinusoidal cup move-

ments at frequencies less than the pendulum’s natural frequency at 0.74 Hz, the cup and ball

were in-phase, i.e., had zero relative phase (Fig 2B). Hence, to identify where the transient

ended and the steady state began, the instantaneous phase for the cup and, separately, for the

ball position was computed using the Hilbert transform [110,111]. The difference between the

two phases yielded the continuous signal of relative phase.

To obtain instantaneous phase of the cup and ball trajectories, the Hilbert transform was

computed for the entire trial, except the last 1 s to eliminate artifacts due to edge effects. As

any periodic function can be expressed in the complex plane, the measured displacement sig-

nal S(t) can be written as: z(t) = S(t) + iSH(t), where SH (t) is the Hilbert transform of S(t), and i
is the imaginary number. By Euler’s formula, the periodic function in the complex plane is

rewritten in terms of amplitude A(t) and phase φ(t): z(t) = A(t)eiφ(t). This equation shows that

the signal consists of two separable functions of time, A(t) and φ(t). The instantaneous phase φ
(t) can be represented in continuous or modular form between 0 and 2π (Fig 2B). These calcu-

lations were performed in MATLAB using the function hilbert.m (The Mathworks, v.29b,

Natick MA). To obtain relative phase, the algebraic difference between cup phase and ball

phase was computed. The calculated relative phase was subsequently filtered using a 5 Hz low-

pass 8th-order Butterworth filter.

The bottom panel of Fig 2B shows an example time series of relative phase and how it set-

tled into an approximately constant value of zero. To define the end of the transient and the

beginning of the steady state, a threshold had to be determined. Various thresholds were

tested, and the best value was 15% of its maximum value of 180 deg, i.e., 27 deg. Thresholds

more stringent than ±27 deg often led to transients of 15 s, i.e., the entire trial. The time point

when relative phase was smaller than 27 deg and remained below this threshold for the rest of

the trial defined the start of the steady state.

Variability of relative phase as a measure for stability. To obtain an estimate of the sta-

bility of the steady state portion of the trial, the standard deviation of relative phase SD ϕ has
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been used in previous studies on coupled oscillations [43,112,113]. It was calculated as follows:

SD� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

PN
i¼1
j�i � mj

2

r

ð5Þ

where μ is the mean of ϕ, the relative phase during the steady state interval; N is the number of

samples of ϕ during the steady state interval.

Root mean square of force as a measure for effort. The force of the hand acting on the

robotic manipulandum, Finter was measured using a force sensor at the base of the robot han-

dle. Finter was used to quantify effort exerted during each trial, calculated as the averaged inte-

grated squared force, root mean squared force, which quantified Effort.

Effort ¼
1

T
R T

0
½FinterðtÞ�

2 dt ð6Þ

T is the duration of the trial, 15 s.

Smoothness of cup and ball trajectories. Previous work on human control of a mass-

spring system found that humans prioritize smoothness of the object kinematics [13]. This

prior study assessed smoothness based on minimum crackle, two derivatives higher than jerk,

to evaluate their point-to-point transport movement. Their calculation was constrained by the

boundary conditions of the discrete movement, specifically the hand had to be at rest (zero

acceleration) at the start and end of the reach. Such boundary conditions are not present in a

continuous oscillatory interaction, making this metric unsuitable for continuous rhythmic

movements. The Spectral Arc Length (SPARC) method, developed by Balasubramanian et al.

[46,47] rendered more consistent results for continuous rhythmic movement and was also less

affected by noise.

The SPARC method calculates smoothness in the frequency domain, specifically measuring

the arc length of the normalized Fourier magnitude spectrum of the speed profile [46]. A

movement that is smooth in the time domain shows a limited number of frequency compo-

nents in the Fourier domain with a less complex envelope with a shorter arc length. Thus, for a

speed profile v(t), t2[0,T] with movement duration T, the arc length of the frequency-normal-

ized Fourier magnitude spectrum is calculated as:

Zsparc≜ �
R oc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

oc

� �2

þ
dV̂ ðoÞ
do

� �2
s2

4

3

5

1
2

do; V̂ oð Þ≜
VðoÞ
Vð0Þ

ð7Þ

oc≜fomax
c ;minfo; V̂ ðrÞ < � V8r > ogg ð8Þ

V(ω) is the Fourier magnitude spectrum of v(t); V̂ ðoÞ is the amplitude spectrum, normal-

ized with respect to the value at 0 Hz (the DC component). The first term under the square

root normalizes the arc length with respect to ωc, the final frequency that the spectrum is calcu-

lated over. ωc is adaptively selected based on a threshold �V and is upper-bounded byomax
c . The

adaptive frequency window allows the smoothness metric to be independent of movement

amplitude and duration. Following [46], these two parameters were set to �V ¼ 0:05 and omax
c

= 20π. A higher value of �V would result in a lower cut-off frequency and eliminate details in

the spectrum beyond the cut-off; a lower value of �V would make the metric sensitive to noise.

As movement reversals can be interpreted as intermittencies in the movement, smoothness

of rhythmic movement must be calculated over individual movement cycles, delimited by

minima of the cup position. The average smoothness for the cup or ball kinematics for each
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trial Λ was calculated as:

L ¼

PN
i¼1

li
di

N
ð9Þ

λi is the smoothness measure of one cycle, normalized by its duration di; N is the total num-

ber of cycles per trial.

Energy margin as a measure for risk. A core feature in this experiment is that the ball

can escape if the ball angle exceeds the cup’s rim height. For the ball to not spill from the cup,

the total energy of the ball should not exceed a threshold energy or escape energy. The system’s

escape energy is the maximum possible energy of the ball before it escapes the cup. The escape

energy is determined by the parameters of the system: cup rim angle, pendulum length, ball

mass and gravity. If the total energy of the ball exceeds the escape energy, the ball will fly out of

the cup, unless the energy is dissipated. The energy margin is the difference between the escape

energy and the total energy of the system at any given time:

EKinetic ¼
_yðtÞ2l2m

2
ð10Þ

EPotential ¼ mglð1 � cosðyðtÞÞÞ ð11Þ

ETotal ¼ EKineticðtÞ þ EPotentialðtÞ ð12Þ

EEscape ¼ mglð1 � cosyEscapeÞ ð13Þ

EMarginðtÞ ¼ EEscape � ETotalðtÞ ð14Þ

This yields a continuous timeseries of EMargin(t) over the trial. Risk was evaluated at the

moments of ball angle extrema, i.e., the moments where the ball was close to escape. These

point estimates were summed over the trial duration. Risk was calculated as 1 minus the

energy margin:

Risk ¼ 1 �
1

T

� �
1

EEscape

 !
R T

0
EMarginðtÞ dt ð15Þ

Model simulations

Inverse dynamics calculations. Inverse dynamics calculations were conducted to test the

effect of the initial conditions on the interaction force required to generate the desired rhyth-

mic movement of the cup and ball. These calculations did not assume any controller but com-

puted the temporal profile of Finter(t) needed to generate a sinusoidal cup displacement with

peak-to-peak amplitude A and frequency f : x tð Þ ¼ A
2

� �
sin 2pft þ p

2

� �
, where t was time. As

initial ball angle appeared to show the most pronounced convergence to specific values, the

inverse dynamics calculations were run with different initial ball angles θ0, all other initial con-

ditions fixed. A second inverse dynamics simulations fixed θ0, but varied ball velocity _y0 .

Results are summarized in the Additional Analysis.

For the simulations the initial condition for the cup position x0 was set to -0.15 m, the left-

most position for the cup, and initial cart velocity _x0 was set to 0. Initial ball velocity _y0 was set

to -15.81 deg/s, the average initial ball velocity across subjects. While these initial values were

kept constant, the calculations were conducted for all θ0 between -90 deg and 90 deg; the step
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size was 5 deg. To best compare the simulations to subject data, the sinusoidal cup frequency f
was set to the subjects’ mean frequency 0.58 Hz, and the peak-to-peak amplitude A was set to

the subjects’ mean amplitude 0.308 m. Fig 8A and 8B show two example time series of Finter(t)
and ball angle θ, obtained for a sinusoidal cup position x, simulated with two different initial

ball angles. To summarize how the temporal profiles of Finter(t) depended on θ0, the time series

of Finter(t) were strobed at the maxima of the simulated cup position trajectory. The marginal

distribution of these strobed values reflected the regularity of the interaction force. To summa-

rize the results for all initial ball angles, the marginal distributions were plotted as a function of

θ0. To express the degree of complexity of each distribution, mutual information was calcu-

lated between the computed force profile and the ball dynamics, following the same proce-

dures as for the experimental data.

In a second inverse dynamics simulation, initial ball velocity values _y0 were varied between

-180 deg/s and 180 deg/s; the step size was 5 deg/s. The initial cup position x0 and velocity _x0

were identical to above; θ0 was one of four values θ0 = 15, 0, -15, -30.29 deg (the simulations

were run four times). For each simulation run with a given _y0 , Finter(t) was strobed at the max-

ima of the simulated cup trajectory and its marginal distribution was obtained; these distribu-

tions were plotted against initial ball velocity, as shown in the Additional Analysis.

Forward dynamics simulations with impedance control. To evaluate and compare the

chosen initial conditions with a control model, forward dynamic simulations were conducted.

However, this required a controller. To minimize the number of parameters, a first-order

impedance controller with a spring and damper in parallel was used as force generator Finter
around the desired cup position xdes and velocity _xdes (Fig 11A):

Finter ¼ � Kðx � xdesÞ � Bð _x � _xdesÞ ð16Þ

Stiffness K and damping B served to minimize errors between x(t) and xdes(t) and _xðtÞ and

_xdesðtÞ, respectively. The desired trajectory was a sinusoid, sufficient to represent the instruc-

tion to move the cup rhythmically. The parameters K and B were assumed to be constant dur-

ing a trial. However, appropriate values that matched the experimental data had to be

specified.

Fig 11. Model of hand impedance and estimation of impedance values: A. Control model with a first-order hand impedance coupled to the cup-and-ball

system. The interactive dynamics is represented by a spring K, in parallel with a damper B. The desired trajectory is denoted as xdes. B. Landscape of cost scores

C for all stiffness and damping combinations, fitted to the experimental data. C is the goodness of fit for given pairs of K and B to the human data. Yellow

indicates impedance values that produce high C values and blue values that produce low C values. The global minimum at stiffness K = 40 N/m and damping

B = 40 Ns/m, shown by the red point. This landscape is the point-wise average of all 1100 successful trials.

https://doi.org/10.1371/journal.pcbi.1009597.g011

PLOS COMPUTATIONAL BIOLOGY Preparing complex objects to simplify interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009597 December 17, 2021 30 / 38

https://doi.org/10.1371/journal.pcbi.1009597.g011
https://doi.org/10.1371/journal.pcbi.1009597


Estimation of human stiffness and damping values. Given the yet unresolved problem

of directly measuring stiffness and damping during movement, K and B were estimated post

hoc from the subjects’ kinematic data. Using an optimization procedure, the position and

velocity of cup and ball of each experimental trial were compared to the corresponding trajec-

tories generated by feedforward simulations, sweeping through the 2-dimensional K-B param-

eter space [22]. For each experimental trial, the mean frequency f and mean amplitude A were

calculated, and the simulation was performed with the same f and A of the given trial. The sim-

ulations also started with the same initial conditions as the experimental trial, using θ0 and _y0 ;

x0 was set to -0.15 m, _x0 was zero by definition. The simulations were run for 15 s with differ-

ent combinations of K and B sweeping through the following ranges K: 10 N/m to 120 N/m,

step size 2 N/m; B: 10 Ns/m to 60 Ns/m, step size 1 Ns/m. The cost C to be minimized was the

root mean square difference between all simulated and experimental trajectories x(t),
_xðtÞ; yðtÞ; _yðtÞ. Each term was normalized by the corresponding experimental maximum

value (H1 norm):

C ¼
1

4

rmsðxe � xsÞ
kxek1

þ
rmsð _xe � _xsÞ

k _xek1
þ
rmsðye � ysÞ
kyek1

þ
rmsð _ye �

_ysÞ

k _yek1

" #

ð17Þ

subscripts e and s denote experimental and simulated trials, respectively. Rather than conduct-

ing one cost calculation for the entire trial, we further parsed the trials into individual cycles to

minimize the effect of frequency variations in the experimental trials on cost C. After aligning

the peaks of the experimental and simulated cycles (approximately 8 cycles per trials), the

absolute difference was calculated between the experimental and simulated trajectories, and

then normalized by its H1 norm of the respective trajectory for that specific trial. C was the

average cost across all cycles for a given experimental trial for a given combination of K and B.

This optimization procedure first aimed to identify the combination of K and B that best

approximated each experimental trial. Then, the two-dimensional cost landscapes of all indi-

vidual 1100 successful trials of all subjects were averaged to minimize the effect of local minima

in a cost landscape. This produced one averaged cost landscape as shown in Fig 11B. The mini-

mum cost was found for K = 40 N/m and B = 40 Ns/m, highlighted by the red point. Hence,

these K and B values were used in all forward simulations.

We also investigated whether the values changed with practice. However, no significant

trends were identified.

Statistical analysis

The trials in which the subjects lost the ball were eliminated from further analysis, as reported

in Fig 3. In total, there were 220 failed trials, leaving 1100 successful trials for analysis. In 18 of

these failed trials the ball was lost in the preparation interval, in 59 of the failed trials the ball

was lost in the first 2 cycles of the rhythmic movement.

The main performance metrics showed approximately exponential time courses over the

120 trials. Therefore, exponential fits were applied to estimate the time constants of these

changes. This allowed comparisons of the time scales of these processes to estimate their corre-

lation or dependency. For the changes in initial ball angles, individual fits were computed and

the asymptotes were compared. To statistically test whether these changes with practice were

significant, the mean values of the first 5 successful trials were compared with the last 5 suc-

cessful trials of the 11 subjects, using paired t-tests within subjects. Note that these 5 trials were

the successful ones, excluding failed trials. Hence, the mean especially for the first 5 trials often

extended beyond trial number 5, as more than 50% of the subjects had failed trials at the
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beginning of the experiment (Fig 3A). Prior to the t-tests, the data were evaluated for normal

distribution using Kolmogorov-Smirnov tests [114]. All dependent measures satisfied the cri-

teria for normal distribution. For the nonlinear changes across trials, the exponential function

y ¼ A 1þ e� t
t

� �
þ B was used; for increasing time courses, the exponential function y ¼

A 1 � e� t
t

� �
þ B was applied. All data processing and analyses were performed with MATLAB

(The MathWorks, Natick, MA). The time constants were estimated and the R2 values were

computed using the Curve Fitting Toolbox in MATLAB.
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Fig 12. Effect of initial ball velocity on interaction forces: Stroboscopic plots of Finter(t) across different initial ball velocities, _y
_

0, shown separately for four

different initial ball angles, θ0; from top to bottom: +15 deg, 0 deg, -15 deg and -30.29 deg. These distributions were obtained for each simulation with different
_y
_

0 from -180 deg/s to +180 deg/s (step size 5 deg/s). The bottom panel includes the histogram of _y
_

0 measured in all trials pooled over all subjects; different

subjects appear in different colors.

https://doi.org/10.1371/journal.pcbi.1009597.g012
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Additional analysis

Inverse dynamics: Effect of initial ball velocity on interaction forces. To examine the

effect of initial ball velocity _y0 on Finter(t), the same inverse dynamics calculations and strobo-

scopic summary of force profiles were conducted again, but now for fixed initial ball angles θ0,

while sweeping through a large range of _y0 between -180 to +180 deg/s. The initial condition

for the cup position x0 was set to -0.15 m, the left-most position for the cup, and cup velocity

was set to _x0 ¼ 0. Four stroboscopic force diagrams were produced for four values of initial

ball angles: θ0 = +15, 0, -15, -30.29 deg. These values were chosen because they represented val-

ues of the observed initial ball angles θ0 and produced a range of different Finter(t) behaviors.

The value θ0 = +15 deg was chosen to elicit chaotic behavior. Fig 12 shows the four strobed

force distributions for the four different initial ball velocities.

Comparing the structure of the strobed force distributions across the four initial ball angles

shows that for θ0 = +15 deg and 0 deg, there were no values _y0 that would produce a simple

sinusoidal Finter(t). In contrast, the stroboscopic forces for both θ0 = -15 deg and θ0 = -30.29

deg were symmetric about _y0 = 0 deg/s and had less range in the strobed Finter(t) values. The

most predictable profile was observed for ball velocity _y0 = 0 deg/s at these initial ball angles.

For θ0 = -15 deg and θ0 = -30.29 deg, the regions with relatively simple interaction forces were

-20< _y0 < +20 deg/s. Furthermore, for the stroboscopic plots with θ0 = -15 deg and θ0 =

-30.29 deg, there were no _y0 values that would render the profile of Finter(t) chaotic. These val-

ues best represent the initial ball angles that subjects chose (Fig 8).

Comparison with human data. At the bottom of Fig 12, a histogram of the experimental

_y0 values of all subjects is plotted, each subject in a different color. As summarized above, all

subjects converged to _y0 = -15.81 deg/s on average over the course of their 120 trials, seen in

the relatively broad peak of the distribution. If the subjects chose an initial ball angle that was

close to -30.29 deg, there were no _y0 values that would render their Finter(t) profile chaotic.

However, the strobe plots with ball angles at -15, 0, and +15 deg did not afford any solution

with a simple sinusoidal Finter(t).
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